1
|
Ma Q, Yang X, Zhao Y. Development of a Coumarin-Based Schiff Base Fluorescent Probe and its Application in Detection of Cu²⁺. J Fluoresc 2025:10.1007/s10895-024-04114-9. [PMID: 39776091 DOI: 10.1007/s10895-024-04114-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
A highly practical Schiff base fluorescent probe, (E)-3-amino-N'-((7-(diethylamino)-2-oxo-2 H-chromen-3-yl)methylene)thiophene-2-carbohydrazide (M), with a facile synthetic route has been successfully developed. M has been utilized for the specific detection of Cu2+ in THF/H2O Tris buffer solution (v/v = 9:1, 0.01 M, pH = 7.4) via the fluorescence quenching mechanism. The detection of Cu2+ by M has been largely unaffected by interfering ions and has demonstrated a distinct dual-channel response in both colorimetry and fluorescence. The response time of M towards Cu2+ is remarkably fast, taking only 30 s. Additionally, M exhibits exceptional sensitivity with a limit of detection (LOD) as low as 1.76 × 10- 7 M. The stoichiometric ratio between M and Cu2+ has been determined to be 1:1 through Job's Plot, while the binding constant has been calculated as 1.19 × 104 M- 1 using the Benesi-Hildebrand equation. The structure of M has been elucidated by 1H NMR and ESI-MS analyses, thereby confirming the binding mode between M and Cu2+. Further validation has been achieved through DFT calculations. The test paper based on M has finally been prepared for the rapid and convenient detection of Cu2+. The M has also been utilized for the detection of Cu2+ in real samples, including lake water, onions, and coffee, demonstrating favorable recovery rates. Moreover, successful visual detection has been achieved in food samples such as bean sprouts and rice. The aforementioned examples have collectively illustrated the practical applicability of M in authentic samples.
Collapse
Affiliation(s)
- Qiurui Ma
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Xinli Yang
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yingying Zhao
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Zou YL, Liu YT. A novel isophorone-based NIR fluorescent and colormetric probe for Al 3+ sensing and its application for living cells and plants imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124040. [PMID: 38428211 DOI: 10.1016/j.saa.2024.124040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 03/03/2024]
Abstract
In this paper, an isophorone-based NIR fluorescent and colormetric probe BDDH for Al3+ was synthesized and characterized, it showed highly selectivity and sensitivity through significant fluorescence enhancement and visible color change towards Al3+. The job plot confirmed that the binding ratio of BDDH with Al3+ was 1:1. Furthermore, the limit of detection (LOD) of Al3+ was determined to be 4.01 × 10-8 M. Moreover, BDDH was successfully applicated in identification of Al3+ in the different water samples, cell imaging in alive MCF-7 cells and plant imaging in soybean roots.
Collapse
Affiliation(s)
- Yue-Li Zou
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ya-Tong Liu
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
3
|
Anitha O, Thiruppathiraja T, Lakshmipathi S, Murugesapandian B. Diethylaminophenol appended pyrimidine bis hydrazone for the sequential detection of Al 3+ and PPi ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123077. [PMID: 37413920 DOI: 10.1016/j.saa.2023.123077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/05/2023] [Accepted: 06/25/2023] [Indexed: 07/08/2023]
Abstract
In this study, a novel easy-to-prepare diethylaminophenol appended pyrimidine bis hydrazone (HD) has been designed and developed. The probe exhibits excellent sequential sensing characteristics towards Al3+ and PPi ions. The emission studies, various spectroscopic techniques and lifetime results have been utilized to understand the binding mechanism of HD with Al3+ ions and, to discover the specificity as well as the efficacy of the probe in sensing Al3+ ions. The good association constant in addition to the lower detection limit values makes the probe effective for the detection of Al3+. The in-situ produced HD-Al3+ ensemble could consecutively detect PPi via a turn-off fluorescence response and the selectivity and sensitivity characteristics of the generated ensemble towards PPi were described based on the demetallation approach. The overall sensing property of HD was perfectly employed for constructing logic gates, real water, and tablet applications. Paper strips, as well as cotton-swab experiments, were also conducted inorder to check the practical utility of the synthesized probe.
Collapse
Affiliation(s)
- Ottoor Anitha
- Department of Chemistry, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | | | | | | |
Collapse
|
4
|
Musikavanhu B, Huang Z, Ma Q, Liang Y, Xue Z, Feng L, Zhao L. A pyridine modified naphthol hydrazone Schiff base chemosensor for Al 3+ via intramolecular charge transfer process. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 301:122961. [PMID: 37290147 DOI: 10.1016/j.saa.2023.122961] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
A pyridine modified naphthol hydrazone Schiff base chemosensor, NaPy, was prepared in a two-step process to detect aluminum ion (Al3+) in different samples. The probe shows a turn-off emission response towards Al3+ at a 1:1 binding stoichiometry via intramolecular charge transfer (ICT) mechanism, as validated by density functional theory (DFT) calculations and a series of spectroscopic measurements. The response time is slightly over one minute with a limit of detection (LOD) value of 0.164 µM, demonstrating the great sensitivity of the probe. It is also found that NaPy exhibits high selectivity towards Al3+ and resists interference from seventeen other cations. Application investigations in paper strips, water samples and HeLa cells suggest that NaPy can be used as an efficient probe for sensing Al3+ in real environmental samples and biosystems.
Collapse
Affiliation(s)
- Brian Musikavanhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zeping Huang
- Monash Suzhou Research Institute, Monash University, Suzhou Industrial Park, Suzhou 215000, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Quanhong Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Yongdi Liang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Lei Feng
- Monash Suzhou Research Institute, Monash University, Suzhou Industrial Park, Suzhou 215000, China.
| | - Long Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
5
|
Wang H, Zhang Y, Xu Y, Wang X, Zeng J, Xue L. A Novel Coumarin‐Based Fluorescent Probe for Sequential Detection of Al
3+
and H
2
PO
4
−. ChemistrySelect 2023. [DOI: 10.1002/slct.202204839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Haibin Wang
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan Ningxia P. R. China 756000
| | - Yang Zhang
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan Ningxia P. R. China 756000
| | - Yang Xu
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan Ningxia P. R. China 756000
| | - Xin Wang
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan Ningxia P. R. China 756000
| | - Junzhu Zeng
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan Ningxia P. R. China 756000
| | - Lei Xue
- College of Chemistry and Chemical Engineering Ningxia Normal University Guyuan Ningxia P. R. China 756000
| |
Collapse
|
6
|
A reversible and selective chromogenic thiazole tagged chemosensor for Hg2+ in aqueous medium: Crystal structure, theoretical investigations and real sample analysis. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
7
|
Man LL, Li SZ, Zhang J, Zhang Y, Dong WK. A new single-armed salamo-based sensor with aggregation-induced emission characteristic for selective sensing of aluminium ions. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Santra A, Mishra S, Panda SK, Singh AK. ESIPT and PET-based easy-to-synthesize unsymmetrical ligand in the reversible fluorimetric sensing of Al3+ and relay sensing of inorganic and biological phosphates. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Yin P, Ma W, Liu J, Hu T, Wei T, Chen J, Li T, Niu Q. Dual functional chemosensor for nano-level detection of Al3+ and Cu2+: Application to real samples analysis, colorimetric test strips and molecular logic gates. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Hoque A, Islam MS, Khan MMA, Ghosh S, Sekh MA, Hussain S, Alam MA. Biphenyl Containing Amido Schiff base Derivative as a Turn-on Fluorescent Chemosensor for Al3+ and Zn2+ ions. NEW J CHEM 2022. [DOI: 10.1039/d2nj03144b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hydrazine derived Bis(2-hydroxybenzylidene)-[1,1'-biphenyl]-2,2'-dicarbohydrazide (sensor 1) has been synthesized and its sensing properties towards metal ions has been demonstrated using simple UV-visble spectroscopic, fluorometric technique and visible colour change. The...
Collapse
|