1
|
Kuznetsova DA, Kuznetsov DM, Vasileva LA, Amerhanova SK, Valeeva DN, Salakhieva DV, Nikolaeva VA, Nizameev IR, Islamov DR, Usachev KS, Voloshina AD, Zakharova LY. Complexation of Oligo- and Polynucleotides with Methoxyphenyl-Functionalized Imidazolium Surfactants. Pharmaceutics 2022; 14:pharmaceutics14122685. [PMID: 36559178 PMCID: PMC9782993 DOI: 10.3390/pharmaceutics14122685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Interaction between cationic surfactants and nucleic acids attracts much attention due to the possibility of using such systems for gene delivery. Herein, the lipoplexes based on cationic surfactants with imidazolium head group bearing methoxyphenyl fragment (MPI-n, n = 10, 12, 14, 16) and nucleic acids (oligonucleotide and plasmid DNA) were explored. The complex formation was confirmed by dynamic/electrophoretic light scattering, transmission electron microscopy, fluorescence spectroscopy, circular dichroism, and gel electrophoresis. The nanosized lipoplex formation (of about 100-200 nm), contributed by electrostatic, hydrophobic interactions, and intercalation mechanism, has been shown. Significant effects of the hydrocarbon tail length of surfactant and the type of nucleic acid on their interaction was revealed. The cytotoxic effect and transfection ability of lipoplexes studied were determined using M-HeLa, A549 cancer cell lines, and normal Chang liver cells. A selective reduced cytotoxic effect of the complexes on M-HeLa cancer cells was established, as well as a high ability of the systems to be transfected into cancer cells. MPI-n/DNA complexes showed a pronounced transfection activity equal to the commercial preparation Lipofectamine 3000. Thus, it has been shown that MPI-n surfactants are effective agents for nucleic acid condensation and can be considered as potential non-viral vectors for gene delivery.
Collapse
Affiliation(s)
- Darya A. Kuznetsova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
- Correspondence:
| | - Denis M. Kuznetsov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Leysan A. Vasileva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Syumbelya K. Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Dilyara N. Valeeva
- Institute of Innovation Management, Kazan National Research Technological University, Karl Marx Str. 68, 420015 Kazan, Russia
| | - Diana V. Salakhieva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlyovskaya Str. 18, 420008 Kazan, Russia
| | - Viktoriia A. Nikolaeva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlyovskaya Str. 18, 420008 Kazan, Russia
| | - Irek R. Nizameev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Daut R. Islamov
- FRC Kazan Scientific Center of RAS, Russian Academy of Sciences, Lobachevsky Street 2/31, 420111 Kazan, Russia
| | - Konstantin S. Usachev
- FRC Kazan Scientific Center of RAS, Russian Academy of Sciences, Lobachevsky Street 2/31, 420111 Kazan, Russia
| | - Alexandra D. Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Lucia Ya. Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
| |
Collapse
|
2
|
Calix[4]arene Polyamine Triazoles: Synthesis, Aggregation and DNA Binding. Int J Mol Sci 2022; 23:ijms232314889. [PMID: 36499212 PMCID: PMC9738031 DOI: 10.3390/ijms232314889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Artificial gene delivery systems are in great demand from both scientific and practical biomedical points of view. In this paper, we present the synthesis of a new click chemistry calix[4]arene precursor with free lower rim and new water-soluble calixarene triazoles with 12 amino-groups on the upper rim (one with free phenol hydroxyl groups and two another containing four butyl or tetradecyl fragments). Aggregation in the series of amino-triazole calixarenes of different lipophilicity (calixarene with free phenol hydroxyl groups or butyl and tetradecyl fragments on the lower rim) was studied using dynamic light scattering and fluorescent pyrene probe. It was found that calix[4]arene with a free lower rim, like alkyl-substituted butyl calix[4]arene, forms stable submicron aggregates 150-200 nm in size, while the more lipophilic tetradecyl -substituted calix[4]arene forms micellar aggregates19 nm in size. Using UV-Vis spectroscopy, fluorimetry and CD, it was shown that amino-triazole calix[4]arenes bind to calf thymus DNA by classical intercalation. According to DLS and TEM data, all studied macrocycles cause significant DNA compaction, forming stable nanoparticles 50-20 nm in size. Among all studied calix[4]arenes the most lipophilic tetradecyl one proved to be the best for both binding and compaction of DNA.
Collapse
|