1
|
Chen S, Zheng Y, Gong J, Mo S, Ren Y, Xu J, Lu M. Core-shell structured lignin-stabilized silver nanoprisms for colorimetric detection of sulfur ions. Int J Biol Macromol 2024; 260:129626. [PMID: 38266862 DOI: 10.1016/j.ijbiomac.2024.129626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Widespread occurrence of sulfides in domestic and industrial wastewater contributes to environmental pollution and poses risks to human health. Therefore, the development of highly selective, sensitive, and rapid sulfur ion (S2-) detection probes in aquatic ecosystems is of paramount importance. In this study, lignin-stabilized silver nanoprisms (EHL@AgNPRs) were prepared using the seed growth and self-assembly methods. Based on this, a novel, high-performance, and environmentally friendly S2- colorimetric detection method was proposed. Lignin is believed to coat the surface of AgNPRs through cation-π and electrostatic interactions, acting as an excellent dispersant and stabilizer to prevent aggregation and shape deformation. This allows AgNPRs to maintain localized surface plasmon resonance (LSPR) characteristics and superior colorimetric sensing sensitivity towards S2- even after 30 d. The EHL@AgNPRs exhibited remarkable selectivity towards S2- with a minimum detection limit of 41.3 nM. The conjugation of lignin with AgNPRs offers a highly promising approach for the rapid detection of S2- in natural aquatic environments and for the valorization of lignin.
Collapse
Affiliation(s)
- Shiyang Chen
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530000, People's Republic of China
| | - Yao Zheng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530000, People's Republic of China
| | - Jianyu Gong
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530000, People's Republic of China
| | - Shuhua Mo
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530000, People's Republic of China
| | - Yuechen Ren
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530000, People's Republic of China
| | - Junran Xu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530000, People's Republic of China
| | - Minsheng Lu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530000, People's Republic of China.
| |
Collapse
|
2
|
Okla MK, Balasurya S, Alaraidh IA, Mohebaldin A, Al-Ghamdi AA, Al-Okla MA, Abdel-Maksoud MA, Abdelaziz RF, Soufan W, Balakrishnaraja R, Raju LL, Thomas AM, Sudheer Khan S. Plasma-assisted in-situ preparation of L-cystine functionalized silver nanoparticle: An intelligent multicolor nano-sensing of cadmium and paracetamol from environmental sample. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121330. [PMID: 35605418 DOI: 10.1016/j.saa.2022.121330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
L-cystine (L-cys) functionalized plasmonic silver nanomaterial (Ag NPs) was fabricated toward the selective and sensitive detection of paracetamol and cadmium. The prepared L-cys-Ag nanoparticles (NPs) were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction spectroscopy (XRD) and fourier transform infrared spectroscopy (FTIR) analyses. SEM imaging show that Ag NPs was decorated on the surface of L-cysteine 3D cubic nanosheet. L-cys-Ag NPs showed selective and sensitive detection towards paracetamol and cadmium. The interference study confirms that the presence of other metal ions didn't inhibit the detection of cadmium by L-cys-Ag NPs. The limit of detection of paracetamol and cadmium by L-cys-Ag NPs was calculated to be 1.2 and 2.82 nM respectively. In addition, the real sample detection of paracetamol on blood serum and urine, and cadmium on STP were performed and the recovery percentage was above 97%. Further, the real sample analysis was performed in tap and drinking water and the recovery percentage was more than 98%. The analytic logic gate on the multicolour detection of cadmium and paracetamol was performed for the semi-quantitative monitoring of paracetamol and cadmium by L-cys-Ag NPs. The developed L-cys-Ag NPs were found to be an effective tool for the monitoring of cadmium in environmental water bodies and paracetamol in blood and urine.
Collapse
Affiliation(s)
- Mohammad K Okla
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - S Balasurya
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Ibrahim A Alaraidh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Asmaa Mohebaldin
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah A Al-Ghamdi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammed A Al-Okla
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ramadan F Abdelaziz
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Austria
| | - Walid Soufan
- College of Food and Agriculture Sciences, King Saud University. P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - R Balakrishnaraja
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Lija L Raju
- Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, India
| | - Ajith M Thomas
- Department of Botany and Biotechnology, St Xavier's College, Thumba, Thiruvananthapuram, India
| | - S Sudheer Khan
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India.
| |
Collapse
|
3
|
Balasurya S, Okla MK, Mohebaldin A, Al-Ghamdi AA, Abdel-Maksoud MA, Almunqedhi B, AbdElgawad H, Thomas AM, Raju LL, Khan SS. Self-assembling of 3D layered flower architecture of BiOI modified MgCr 2O 4 nanosphere for wider spectrum visible-light photocatalytic degradation of rhodamine B and malachite green: Mechanism, pathway, reactive sites and toxicity prediction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114614. [PMID: 35121463 DOI: 10.1016/j.jenvman.2022.114614] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
In this study, 3D BiOI nanoparticle (BOI NPs) modified MgCr2O4 nanoparticle (MCO NPs) was fabricated by simple sonochemical and coprecipitation method for the enhanced photocatalytic activity. The morphological structure of the MgCr2O4-BiOI nanocomposite (MCO-BOI NCs) was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-visible diffuse reflectance spectroscopy (DRS), electron impedance spectroscopy (EIS) and photo luminescence (PL). The lower in the PL intensity and small arc in EIS for NCs shows the effective charge separation and lower in rate of recombination of charge carriers in NCs than the pure MCO and BOI NPs. The degradation efficiency of Rhodamine B (RhB) and malachite green (MG) by MCO-BOI NCs was found to be 99.5% and 98.2% receptivity. In addition, the photocatalytic degradation of RhB and MG was studied under various environmental parameters (different pH, varying the concentration of NCs and dyes) and response surface (RSM) plot was performed. The complete mineralization of RhB and MG by MCO-BOI NCs was determined by TOC. In addition, the photocatalytic degradation pathway was elucidated based on GC-MS results and Fukui function. In addition, the toxicity of intermediate formed during the degradation of RhB and MG was predicted by ECOSAR. The present work highlights the application of MCO-BOI NCs in environmental remediation for toxic pollutant removal.
Collapse
Affiliation(s)
- S Balasurya
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | | - Abdullah A Al-Ghamdi
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Bander Almunqedhi
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020, Antwerpen, Belgium
| | - Ajith M Thomas
- Department of Botany and Biotechnology, St Xavier's College, Thumba, Thiruvananthapuram, India
| | - Lija L Raju
- Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, India
| | - S Sudheer Khan
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India.
| |
Collapse
|