1
|
Hu G, Xu HD, Fang J. Sulfur-based fluorescent probes for biological analysis: A review. Talanta 2024; 279:126515. [PMID: 39024854 DOI: 10.1016/j.talanta.2024.126515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
The widespread adoption of small-molecule fluorescence detection methodologies in scientific research and industrial contexts can be ascribed to their inherent merits, including elevated sensitivity, exceptional selectivity, real-time detection capabilities, and non-destructive characteristics. In recent years, there has been a growing focus on small-molecule fluorescent probes engineered with sulfur elements, aiming to detect a diverse array of biologically active species. This review presents a comprehensive survey of sulfur-based fluorescent probes published from 2017 to 2023. The diverse repertoire of recognition sites, including but not limited to N, N-dimethylthiocarbamyl, disulfides, thioether, sulfonyls and sulfoxides, thiourea, thioester, thioacetal and thioketal, sulfhydryl, phenothiazine, thioamide, and others, inherent in these sulfur-based probes markedly amplifies their capacity for detecting a broad spectrum of analytes, such as metal ions, reactive oxygen species, reactive sulfur species, reactive nitrogen species, proteins, and beyond. Owing to the individual disparities in the molecular structures of the probes, analogous recognition units may be employed to discern diverse substrates. Subsequent to this classification, the review provides a concise summary and introduction to the design and biological applications of these probe molecules. Lastly, drawing upon a synthesis of published works, the review engages in a discussion regarding the merits and drawbacks of these fluorescent probes, offering guidance for future endeavors.
Collapse
Affiliation(s)
- Guodong Hu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China.
| | - Hua-Dong Xu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, China.
| |
Collapse
|
2
|
Janakipriya S, Divya D, Mala R, Nandhagopal M, Thennarasu S. Wavelength specific aggregation induced emission in aqueous media permits selective detection of Ag + and Hg 2+ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 325:125085. [PMID: 39265469 DOI: 10.1016/j.saa.2024.125085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/14/2024]
Abstract
A new 1,8-naphthalimide derivative (probe 1) adopts V-shaped structure, emits fluorescence and displays the Mie effect and aggregation-induced emission (AIE). Selective interactions of thiophilic Ag+ and Hg2+ ions (10 µM) with 1 (10 µM) resulted in AIEs at 499 and 521 nm, respectively. Both Ag+ and Hg2+ induce the formation of 1:2 complexes with 1, leading to the formation of AIE active aggregates with an average size of 423 and 198 nm, respectively. The formation of crystalline needles with Ag+ and spherical aggregates with Hg2+ results in wavelength specific AIE that permits the naked-eye and fluorometric detection of Ag+ and Hg2+ ions. Probe 1 shows excellent selectivity toward Ag+ and Hg2+ among various metal ions, therefore, 1 is suitable for the selective and quantitative detection of Ag+ and Hg2+ ions. Job plots are used for the determination of the stoichiometry of the complexes formed. It is evident from the fluorescence images of probe 1 in Rhizoctonia oryzae mycelia cells that they can be employed as potential candidates for in-vitro bioimaging.
Collapse
Affiliation(s)
- Subramaniyan Janakipriya
- Organic and Bioorganic Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India
| | - Dhakshinamurthy Divya
- Organic and Bioorganic Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India; Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai 600062, India.
| | - Ramanjaneyulu Mala
- Organic and Bioorganic Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India
| | - Manivannan Nandhagopal
- Saveetha Medical College and Hospital, Institute of Medical and Technical Science, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Sathiah Thennarasu
- Organic and Bioorganic Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India.
| |
Collapse
|
3
|
Yan L, Tang L, Wu X, Li L. Recent Advances in Organic Small-Molecule Fluorescent Probes Based on Dicyanoisophorone Derivatives. Crit Rev Anal Chem 2024:1-28. [PMID: 38836446 DOI: 10.1080/10408347.2024.2354328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Fluorescent probe technology holds great promise in the fields of environmental monitoring and clinical diagnosis due to its inherent advantages, including easy operation, reliable detection signals, fast analysis speed, and in situ imaging capabilities. In recent years, a wide range of fluorescent probes based on diverse fluorophores have been developed for the analysis and detection of various analytes, yielding significant achievement. Among these fluorophores, the dicyanoisophorone-based fluorophores have garnered significant attention. Dicyanoisoporone exhibits minimal fluorescence, yet possesses a robust electron-withdrawing capability, rendering it suitable for constructing of D-π-A structured fluorophores. Leveraging the intramolecular charge transfer (ICT) effect, such fluorophores exhibit near-infrared (NIR) fluorescence emission with a large Stokes shift, thereby offering remarkable advantages in the design and development of NIR fluorescence probes. This review article primarily focus on small-molecule dicyanoisoporone-based probes from the past two years, elucidating their design strategies, detection performances, and applications. Additionally, we summarize current challenges while predicting future directions to provide valuable references for developing novel and advanced fluorescence probes based on dicyanoisoporone derivatives.
Collapse
Affiliation(s)
- Liqiang Yan
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Liting Tang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Xiongzhi Wu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| | - Lin Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi, China
| |
Collapse
|
4
|
Sun L, Zhou Z, Wu Y, Meng Z, Huang H, Li T, Wang Z, Yang Y. A novel colormetric and light-up fluorescent sensor from flavonol derivative grafted cellulose for rapid and sensitive detection of Hg 2+ and its applications in biological and environmental system. Int J Biol Macromol 2024; 266:131209. [PMID: 38565364 DOI: 10.1016/j.ijbiomac.2024.131209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Mercury ion (Hg2+) is one of harmful heavy metal ions that can accumulate inside the human organism and cause some health problems. In the article, a highly effective fluorescent probe named EC-T-PCBM was prepared by grafting flavonol derivatives onto ethyl cellulose for the specific recognition of Hg2+. EC-T-PCBM exhibited a remarkable fluorescence light-up response toward Hg2+ with excellent sensitivity. EC-T-PCBM possessed several prominent sensing properties for Hg2+, such as low detection limit (43.9 nM), short response time (5 min), and wide detection pH range (6-9). The response mechanism of EC-T-PCBM to Hg2+ has been verified through 1H NMR titration and DFT computation. Additionally, EC-T-PCBM not only can be used for accurately determining trace amount of Hg2+ in actual environmental water samples, but also can serve as a portable and rapid device by loading it on test strips for sensitive and selective visualization of Hg2+. More importantly, the confocal fluorescence imaging of onion cells suggested the favorable cell membrane permeability of EC-T-PCBM and its prominent ability to continuously monitor the enrichment from Hg2+ within fresh plant tissues.
Collapse
Affiliation(s)
- Linfeng Sun
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zihang Zhou
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yangmei Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiyuan Meng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huan Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ting Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yiqin Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
5
|
Yu J, Fan J, Song Y, Zhao Y, Lin Z, Jiang L, Li H. Near-infrared fluorescent probe with large Stokes shift for specific detection of lysine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123734. [PMID: 38064966 DOI: 10.1016/j.saa.2023.123734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 01/13/2024]
Abstract
A new near-infrared (NIR) fluorescent probe CL based on coumarin- dicyanoisophorone was synthesized. Addition of Lys to probe CL solution in DMF/H2O (9:1, v/v) medium resulted in noticeable enhancement in the intensity of the fluorescence emission at 702 nm, accompanying distinct color change from yellow to pink. While addition of other amino acids and biothiols (Gly, Hcy, GSH, Glu, Val, Tyr, Arg, Trp, Lys, His, Leu, Phe, Asp and Met) did not bring about substantial changes in both fluorescence emission and color. The detection limit was calculated to be 0.51 μM. Job's plot test revealed that probe CL and Lys formed a complex of 1:1 stoichiometry. Probe CL showed high stability and could be used to recognize Lys in a wide pH range of 4.0-10.0. The sensing mechanism was proposed and verified by 1H NMR spectral measurement. The dual-modal fluorescence turn-on and colorimetric NIR probe with an extremely large Stokes shift of 280 nm may be utilized for highly specific and practical sensing of Lys.
Collapse
Affiliation(s)
- Jirui Yu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Ji Fan
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Yanxi Song
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yong Zhao
- School of Chemistry and Material Engineering, Huainan Normal University, 232038, Huainan, Anhui Province, China
| | - Ziyun Lin
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Lin Jiang
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Hongqi Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
6
|
Li S, Chang X, Kong X, Wang Q, Zhao F, Han J, Liu Y, Wang T. A visible BODIPY-based sensor for 'Naked-Eye' recognition of Ag + and its application on test paper strips. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123446. [PMID: 37748338 DOI: 10.1016/j.saa.2023.123446] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
In this study, a novel, highly sensitive fluorescent sensor (E)-2-((2-(benzo[d] thiazol-2-yl) quinolin-8-yl) oxy)-N'-(4-(5, 5-difluoro-1, 3, 7, 9-tetramethyl-5H-4λ4, 5λ4-dipyrrolo [1, 2-c:2', 1'-f] [1, 3, 2] diazaborinin-10-yl) benzylidene) acetohydrazide (TQB) was developed for dual mode of Ag+ detection (colorimetric/fluorescence), and its structural and spectral properties were characterized by 1H NMR, ESI-MS, X-ray, ultraviolet and fluorescence photometry. It is found that TQB could specifically and efficiently identify Ag+ among many other metal ions in CH3OH/H2O (7:3 v/v, pH = 7.23) buffer. The maximum absorption wavelength of TQB is red-shifted while its fluorescence is quenched with a quenching rate of 88.7%. The energy difference between TQB and TQB-Ag+ complex was calculated by DFT, and the applicability of TQB was verified by paper strip test. In addition, TQB has been successfully applied to the determination of Ag+ in real water samples with good reversibility and recoveries.
Collapse
Affiliation(s)
- Shengling Li
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, PR China.
| | - Xiliang Chang
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, PR China
| | - Xiangpeng Kong
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, PR China
| | - Qi Wang
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, PR China
| | - Feng Zhao
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, PR China
| | - Jia Han
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, PR China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, PR China
| | - Tianyuan Wang
- Department of Chemistry and Chemical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, PR China
| |
Collapse
|
7
|
Fang Y, Ding S, Li W, Zhang J, Sun H, Lin X. Dual-Channel Fluorescent/Colorimetric-Based OPD-Pd/Pt NFs Sensor for High-Sensitivity Detection of Silver Ions. Foods 2023; 12:4260. [PMID: 38231754 DOI: 10.3390/foods12234260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024] Open
Abstract
Silver ions (Ag+) exist widely in various areas of human life, and the food contamination caused by them poses a serious threat to human health. Among the numerous methods used for the detection of Ag+, fluorescence and colorimetric analysis have attracted much attention due to their inherent advantages, such as high sensitivity, simple operation, short time, low cost and visualized detection. In this work, Pd/Pt nanoflowers (NFs) specifically responsive to Ag+ were synthesized in a simple way to oxidize o-phenylenediamine (OPD) into 2,3-diaminophenazine (DAP). The interaction of Ag+ with the surface of Pd/Pt NFs inhibits the catalytic activity of Pd/Pt NFs towards the substrate OPD. A novel dual-channel nanosensor was constructed for the detection of Ag+, using the fluorescence intensity and UV-vis absorption intensity of DAP as output signals. This dual-mode analysis combines their respective advantages to significantly improve the sensitivity and accuracy of Ag+ detection. The results showed that the limit of detection was 5.8 nM for the fluorescence channel and 46.9 nM for the colorimetric channel, respectively. Moreover, the developed platform has been successfully used for the detection of Ag+ in real samples with satisfactory recoveries, which is promising for the application in the point-of-care testing of Ag+ in the field of food safety.
Collapse
Affiliation(s)
- Yuan Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shusen Ding
- State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Weiran Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingjing Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hui Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin Key Laboratory of Food Quality and Health, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaodong Lin
- Zhuhai UM Science & Technology Research Institute, Zhuhai 519000, China
| |
Collapse
|
8
|
Li H, Yan J, Jiang L, Zhao Y, Song Y, Yu J, Cheng L. Selective and Sensitive Detection of Hg 2+ and Ag + by a Fluorescent and Colorimetric Probe with Large Stokes Shift. J Fluoresc 2023:10.1007/s10895-023-03478-8. [PMID: 37922113 DOI: 10.1007/s10895-023-03478-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/16/2023] [Indexed: 11/05/2023]
Abstract
Development of fluorescent sensors with large Stokes shift for selective detection of heavy metals is of great importance. A novel fluorescent probe with extremely large Stokes shift (212 nm) was synthesized for selective and simultaneous detection of Hg2+ and Ag+ ions. The deep yellow probe turned colorless or pale yellow after addition of Hg2+ or Ag+. The new probe could be utilized for absorption spectral detection of Hg2+ and Ag+ both in ethanol and aqueous solution. Addition of Hg2+ and Ag+ ions caused significant decrease in the fluorescence intensity of the new probe and the selective recognition of Hg2+ and Ag+ was not interfered by common competitive metal ions including Li+, Na+, K+, Cu2+, Fe2+, Zn2+, Co2+, Ni2+, Mn2+, Sr2+, Ca2+, Mg2+, Al3+, Cr3+ and Fe3+. The detection limit for Hg2+ and Ag+ was calculated to be 4.68 μM and 4.29 μM, respectively. Application of the new probe for quantitative determination of Hg2+ and Ag+ concentrations in real water samples was accomplished.
Collapse
Affiliation(s)
- Hongqi Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
| | - Jiabao Yan
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Lin Jiang
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Yong Zhao
- School of Chemistry and Material Engineering, Huainan Normal University, Huainan, 232038, Anhui Province, China
| | - Yanxi Song
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jirui Yu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Lang Cheng
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
9
|
Chen H, Li X, Gao P, Pan Y, Liu J. A BODIPY-based turn-off fluorescent probe for mercury ion detection in solution and on test strips. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|