1
|
Tao Y, Wan R, Wang J, Liu Q, Tian M, Wang L, Yang Y, Zou Y, Luo Y, Ke F, Zhou Q, Wang D, Gao D. Carbonized human hair derived carbon dots for detection of clozapine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 298:122803. [PMID: 37148662 DOI: 10.1016/j.saa.2023.122803] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/27/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
Clozapine (CLZ) is known as the most effective antipsychotic medication for schizophrenia. However, low dosage or over dosage of CLZ is adverse to the treatment of Schizophrenia. Thus, it is necessary to develop effective detection method for CLZ. Recently, due to the advantages such as excellent optical properties, good photobleachability and sensitivity, carbon dots (CDs)-based fluorescent sensors for the detection of target analytes have drawn a great deal of attention. In this work, blue fluorescent CDs (Named as B-CDs) with quantum yield (QY) as high as 38% were obtained by using carbonized human hair as source material through one-step dialysis method for the first time. B-CDs showed obvious graphite-like structure with an average of 1.76 nm, containing abundant functional groups such as -C=O, amino N and C-N on the surface of carbon cores. Optical analysis showed that the B-CDs exhibited excitation-dependent emission property with maximum emission wavelength of 450 nm. Moreover, B-CDs were further applied as a fluorescence sensor to the detection of CLZ. The B-CDs based sensor exhibited a good quenching response by CLZ through the inner filter effect and static quenching mechanism with a limit of detection of 67 ng/mL, which was much lower than the minimal effective concentration in blood (0.35 μg/mL). Finally, to test the practical application value of the developed fluorescence method, the determination of the content of CLZ in tablets and the concentration in blood was carried out. Compared with the results of high-performance liquid chromatography (HPLC) method, it can be found that the constructed fluorescence detection method showed high accuracy and had great application potential in the detection of CLZ. Additionally, the results of cytotoxicity experiment showed that B-CDs had low cytotoxicity, which laid the foundation for the subsequent application of B-CDs in biological systems.
Collapse
Affiliation(s)
- Yongqing Tao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Runlan Wan
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Junji Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qiuyi Liu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Meng Tian
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Luchun Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yulian Yang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuemeng Zou
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuanning Luo
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Famin Ke
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Quan Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Dandan Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Die Gao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
2
|
Wang H, Ai M, Liu J. Detecting phosphate using lysine-sensitized terbium coordination polymer nanoparticles as ratiometric luminescence probes. Anal Bioanal Chem 2023; 415:2185-2191. [PMID: 36864308 DOI: 10.1007/s00216-023-04624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
Probes for detecting phosphate ions (Pi) are required for environmental monitoring and to protect human health. Here, novel ratiometric luminescent lanthanide coordination polymer nanoparticles (CPNs) were successfully prepared and used to selectively and sensitively detect Pi. The nanoparticles were prepared from adenosine monophosphate (AMP) and Tb3+, and lysine (Lys) was used as a sensitizer (through the antenna effect) to switch on Tb3+ luminescence at 488 and 544 nm while Lys luminescence at 375 nm was quenched because of energy transfer from Lys to Tb3+. The complex involved is here labeled AMP-Tb/Lys. Pi destroyed the AMP-Tb/Lys CPNs and therefore decreased the AMP-Tb/Lys luminescence intensity at 544 nm and increased the luminescence intensity at 375 nm at an excitation wavelength of 290 nm, meaning ratiometric luminescence detection was possible. The ratio between the luminescence intensities at 544 and 375 nm (I544/I375) was strongly associated with the Pi concentration between 0.1 and 6.0 μM, and the detection limit was 0.08 μM. The dual-emission reverse-change ratio luminescence sensing method can exclude environmental effects, so the proposed assay was found to be very selective. The method was successfully used to detect Pi in real water samples, and acceptable recoveries were found, suggesting that the method could be used in practice to detect Pi in water samples.
Collapse
Affiliation(s)
- Huaxin Wang
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China
| | - Mimi Ai
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China
| | - Jinshui Liu
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China.
| |
Collapse
|