1
|
Yang X, Fan C, Gao J, Gao Y, Wang X, Xu Z, Li F, Yu H, Huang Y, Chen J, Shan Y. Near-infrared fluorescence imaging platform with ultra large Stokes shift for monitoring and bioimaging of hydrogen peroxide in the process of ferroptosis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 330:125666. [PMID: 39740584 DOI: 10.1016/j.saa.2024.125666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/14/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
Hydrogen peroxide (H2O2), as a strong oxidant, is crucial for the aerobic metabolism of organisms and is intricately linked to the onset of numerous diseases. Real-time monitor H2O2 levels in the environment and biological microenvironment is of paramount importance for environment protection and elucidating H2O2-related physiological and pathological processes. In this study, a novel near-infrared fluorescence imaging platform was developed and a near-infrared fluorescent probe FBMH was constructed based on the platform with photoinduced electron transfer mechanism. A series of experiments to evaluate its spectral properties and bioimaging capabilities proved that the probe demonstrated near-infrared emission, excellent selectivity and anti-interference capability in complex environments, along with high sensitivity (LOD = 2.6 × 10-9 mol/L), large Stokes shift (220 nm) and rapid response (15 min). In addition, the detection of H2O2 in actual water samples was realized with the probe. Furthermore, the implement of bioimaging of exogenous and endogenous H2O2 in Hela cells, Raw264.7 cells, zebrafish and BALB/c nude mice, especially the visualization of H2O2 level changes in the process of ferroptosis, testified its excellent potential in monitoring H2O2 in H2O2-related diseases.
Collapse
Affiliation(s)
- Xintong Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chuanfeng Fan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jian Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yingkai Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaochun Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan 114007, China.
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Fei Li
- Biomedical Analysis Center, Army Medical University, Chongqing 400038, China.
| | - Haifeng Yu
- College of Chemistry, Baicheng Normal University, Baicheng, Jilin 137000, China
| | - Yi Huang
- Biomedical Analysis Center, Army Medical University, Chongqing 400038, China
| | - Jin Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yingying Shan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
2
|
Chen X, Li Y, Su J, Zhang L, Liu H. Progression in Near-Infrared Fluorescence Imaging Technology for Lung Cancer Management. BIOSENSORS 2024; 14:501. [PMID: 39451714 PMCID: PMC11506746 DOI: 10.3390/bios14100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/01/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Lung cancer is a major threat to human health and a leading cause of death. Accurate localization of tumors in vivo is crucial for subsequent treatment. In recent years, fluorescent imaging technology has become a focal point in tumor diagnosis and treatment due to its high sensitivity, strong selectivity, non-invasiveness, and multifunctionality. Molecular probes-based fluorescent imaging not only enables real-time in vivo imaging through fluorescence signals but also integrates therapeutic functions, drug screening, and efficacy monitoring to facilitate comprehensive diagnosis and treatment. Among them, near-infrared (NIR) fluorescence imaging is particularly prominent due to its improved in vivo imaging effect. This trend toward multifunctionality is a significant aspect of the future advancement of fluorescent imaging technology. In the past years, great progress has been made in the field of NIR fluorescence imaging for lung cancer management, as well as the emergence of new problems and challenges. This paper generally summarizes the application of NIR fluorescence imaging technology in these areas in the past five years, including the design, detection principles, and clinical applications, with the aim of advancing more efficient NIR fluorescence imaging technologies to enhance the accuracy of tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Xinglong Chen
- Thoracic Medicine Department 1, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, China; (X.C.); (Y.L.); (J.S.)
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yuning Li
- Thoracic Medicine Department 1, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, China; (X.C.); (Y.L.); (J.S.)
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jialin Su
- Thoracic Medicine Department 1, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, China; (X.C.); (Y.L.); (J.S.)
| | - Lemeng Zhang
- Thoracic Medicine Department 1, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, China; (X.C.); (Y.L.); (J.S.)
| | - Hongwen Liu
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China;
| |
Collapse
|
3
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
4
|
Yu X, Huang Y, Tao Y, Fan L, Zhang Y. Mitochondria-targetable small molecule fluorescent probes for the detection of cancer-associated biomarkers: A review. Anal Chim Acta 2024; 1289:342060. [PMID: 38245195 DOI: 10.1016/j.aca.2023.342060] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/22/2024]
Abstract
Cancer represents a global threat to human health, and effective strategies for improved cancer early diagnosis and treatment are urgently needed. The detection of tumor biomarkers has been one of the important auxiliary means for tumor screening and diagnosis. Mitochondria are crucial subcellular organelles that produce most chemical energy used by cells, control metabolic processes, and maintain cell function. Evidence suggests the close involvement of mitochondria with cancer development. As a consequence, the identification of cancer-associated biomarker expression levels in mitochondria holds significant importance in the diagnosis of early-stage diseases and the monitoring of therapy efficacy. Small-molecule fluorescent probes are effective for the identification and visualization of bioactive entities within biological systems, owing to their heightened sensitivity, expeditious non-invasive analysis and real-time detection capacities. The design principles and sensing mechanisms of mitochondrial targeted fluorescent probes are summarized in this review. Additionally, the biomedical applications of these probes for detecting cancer-associated biomarkers are highlighted. The limitations and challenges of fluorescent probes in vivo are also considered and some future perspectives are provided. This review is expected to provide valuable insights for the future development of novel fluorescent probes for clinical imaging, thereby contributing to the advancement of cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Xue Yu
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, PR China
| | - Yunong Huang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, PR China
| | - Yunqi Tao
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, PR China
| | - Li Fan
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Yuewei Zhang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, PR China.
| |
Collapse
|
5
|
Wu Y, Jing F, Huang H, Wang H, Chen S, Fan W, Li Y, Wang L, Wang Y, Hou S. A near-infrared fluorescent probe for tracking endogenous and exogenous H 2O 2 in cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123158. [PMID: 37478761 DOI: 10.1016/j.saa.2023.123158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
H2O2 is an important signaling molecule in the body, and its levels fluctuate in many pathological sites, therefore, it can be used as a biomarker for early diagnosis of disease. Since the environment in vivo is extremely complex, it is of great significance to develop a probe that can accurately monitor the fluctuation of H2O2 level without interference from other physiological processes. Based on this, we designed and synthesized two new near-infrared H2O2 fluorescent probes, LTA and LTQ, based on the ICT mechanism. Both of them have good responses to H2O2, but LTA has a faster response speed. In addition, the probe LTA has good biocompatibility, good water solubility, and a large Stokes shift (95 nm). The detection limit is 4.525 μM. The probe was successfully used to visually detect H2O2 in living cells and zebrafish and was successfully used to monitor the changes in H2O2 levels in zebrafish due to APAP-induced liver injury.
Collapse
Affiliation(s)
- Yuanyuan Wu
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Fengyang Jing
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Hanling Huang
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Haijie Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Shijun Chen
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Wenkang Fan
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Yiyi Li
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Lin Wang
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Yaping Wang
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Shicong Hou
- College of Science, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
6
|
Zong P, Chen Y, Bi J, Han K, Luo J, Wang X, Kong F, Liu K. Development of a novel chitosan-based two-photon fluorescent nanoprobe with enhanced stability for the specific detection of endogenous H 2O 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 298:122797. [PMID: 37150072 DOI: 10.1016/j.saa.2023.122797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/27/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023]
Abstract
Hydrogen peroxide (H2O2) acts as an important reactive oxygen species (ROS) and maintains the redox equilibrium in organisms. Imbalance of H2O2 concentration is associated with the development of many diseases. Traditional small molecular based fluorescent probes often show drawbacks of cytotoxicity and easily metabolic clearance. Herein, a chitosan-based two-photon fluorescent nanoprobe (DC-BI) was constructed and applied for H2O2 detection in live organisms. DC-BI was composed by chitosan nanoparticles and a two-photon fluorophore of naphthalimide analogues (BI) with H2O2-responsive property. The structure of DC-BI was characterized by NMR, FTIR, XPS, XRD, DLS and MLS analyses. As study shown, the nanoprobe DC-BI exhibited improved distribution stability and smaller cytotoxicity. In the presence of H2O2, both the absorption and emission spectra show dramatic changes, the fluorescence intensity at 580 nm obviously enhanced. Furthermore, fluorescence imaging results indicate that DC-BI is capable of imaging endogenous H2O2 in cells and zebrafish. The design and development of chitosan-based nanoprobe DC-BI has provided a general example of nanoprobe construction with excellent distribution stability, two-photon property, and biocompatibility.
Collapse
Affiliation(s)
- Peipei Zong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yunling Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, Shandong 250022, China
| | - Jianling Bi
- Shandong Institute of Geophysical and Geochemical Exploration, Jinan 250109, China
| | - Kejia Han
- Zibo Product Quality Testing Research Institute, Zibo 255022, China
| | - Jinlan Luo
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xiaohui Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Keyin Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
7
|
Zhang Y, Wang H, Liu Y, Niu B, Li W. Preparation of conductive polyaniline hydrogels co‐doped with hydrochloric acid/phytic acid and their application in Ag NPs@ PA/ GCE biosensor for H2O2 detection. J Appl Polym Sci 2023; 140. [DOI: 10.1002/app.53686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/17/2023] [Indexed: 01/06/2025]
Abstract
AbstractAccurate measurement of hydrogen peroxide is of great significance in monitoring human diseases and environmental safety. At present, there are a variety of testing methods, among which the use of electrochemical sensors to accurately measure hydrogen peroxide has gradually become a research hotspot. In this article, phytic acid (PA) with dual functions of doping and cross‐linking and HCl with strong ionization capacity was introduced as dopants to co‐doping polyaniline, and polyaniline hydrogel with a three‐dimensional network structure was prepared. The influence of the HCl/PA co‐doping ratio on conductive polyaniline hydrogel (CPAniH) was explored. The synthesis process and mechanism of HCl/PA‐CPAniH were analyzed and explained. In addition, the conductivity and mechanism of HCl/PA‐CPAniH, as well as the hydrogel characteristics were characterized and studied. A new electrochemical sensor based on polyaniline hydrogel and silver nanoparticles was constructed to detect hydrogen peroxide. The sensor has a good linear relationship, a wide linear range, and a high‐detection limit for H2O2. In addition, it also shows that HCl/PA‐CPAniH is a good interface material for electrochemical sensors and has a certain application potential.
Collapse
Affiliation(s)
- Yanwei Zhang
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan China
- Key Laboratory of Interface Science and Engineering in Advanced Materials Taiyuan University of Technology, Ministry of Education Taiyuan China
| | - Hong Wang
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan China
- Key Laboratory of Interface Science and Engineering in Advanced Materials Taiyuan University of Technology, Ministry of Education Taiyuan China
| | - Yaru Liu
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan China
- Key Laboratory of Interface Science and Engineering in Advanced Materials Taiyuan University of Technology, Ministry of Education Taiyuan China
| | - Baolong Niu
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan China
- Key Laboratory of Interface Science and Engineering in Advanced Materials Taiyuan University of Technology, Ministry of Education Taiyuan China
| | - Wenfeng Li
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan China
- Key Laboratory of Interface Science and Engineering in Advanced Materials Taiyuan University of Technology, Ministry of Education Taiyuan China
| |
Collapse
|
8
|
Li Z, Xiao L, Sun X, Luo C, Li R, Zhang W, Wang Z, Xiao H, Shu W. An ESIPT-based ratiometric fluorescent probe for detecting H 2O 2 in water environment and biosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161609. [PMID: 36642271 PMCID: PMC9837204 DOI: 10.1016/j.scitotenv.2023.161609] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/01/2023]
Abstract
The outbreak of the COVID-19 has resulted in a great increase in the use of H2O2 disinfectant, which is listed as one of the commonly used disinfectants for COVID-19 by the U.S. Environmental Protection Agency. However, excessive use of H2O2 disinfectant can threaten human health and damage the water environment. Therefore, it's of great importance to detect H2O2 in aquatic environments and biological systems. Herein, we proposed a novel ESIPT ratio fluorescent probe (named probe 1) for detecting H2O2 in water environment and biosystems. Probe 1 emits blue fluorescence as the introduction of the phenylboronic acid disrupts the ESIPT process. After reacting with H2O2, the phenylboronic acid is oxidatively removed, and the ESIPT process is restored, which makes the fluorescence emission wavelength red-shifted. Probe 1 exhibited a short response time, high sensitivity, and a large Stokes shift to H2O2. Importantly, it has been successfully used to detect H2O2 not only in actual water samples, but also endogenous and exogenous H2O2 in living cells. The characteristics of probe 1 have a wide range of applications in environmental and biological systems.
Collapse
Affiliation(s)
- Zhuohang Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Liyan Xiao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Xiaoqian Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Chenyao Luo
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Rencheng Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Wenbo Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Zicheng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China.
| |
Collapse
|
9
|
Du W, Shen Z, Liang Y, Gong S, Meng Z, Li M, Wang Z, Wang S. A highly effective "naked eye" colorimetric and fluorimetric curcumin-based fluorescent sensor for specific and sensitive detection of H 2O 2in vivo and in vitro. Analyst 2023; 148:1824-1837. [PMID: 36939165 DOI: 10.1039/d3an00340j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Hydrogen peroxide (H2O2) is involved in many important tasks in normal cell metabolism and signaling. However, abnormal levels of H2O2 are associated with the occurrence of several diseases. Therefore, it is important to develop a new method for the detection of H2O2in vivo and in vitro. A turn-off sensor, 2,2-difluoro-4,6-bis(3-methoxy-4-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)styryl)-2H-1,3,2-dioxaborine (DFCB), based on curcumin was developed for the detection of H2O2. The DFCB, an orange-emitting sensor, was constructed by employing 2,2-difluoro-4,6-bis(4-hydroxy-3-methoxystyryl)-2H-1,3,2-dioxaborine (DFC) as the main carrier, and 2-(4-bromomethylphenyl)-4,4,5,5-tetramethyl-1,3,2-doxaborolane as the recognition site. The recognition group on the DFCB sensor could be completely cleaved by H2O2 to generate the intermediate DFC, which would lead to a colorimetric change from bright orange to light blue accompanying by a significantly quenched fluorescence, which could be seen by the naked eye. This sensor exhibited a highly specific fluorescence response to H2O2, in preference to other relevant species, with an excellent anti-interference performance. The sensor DFCB also possessed some advantages including a wide pH response range (6-11), a broad linear range (0-300 μM), and a low detection limit (1.31 μM). The sensing mechanism of the DFCB sensor for H2O2 was verified by HRMS analysis, 1H-NMR titration and DFT calculations. In addition, the use of the DFCB sensor was compatible with the fluorescence imaging of H2O2 in living cells and zebrafish.
Collapse
Affiliation(s)
- Wenhao Du
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry, University, Nanjing, 210037, China.
| | - Zheyu Shen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry, University, Nanjing, 210037, China.
| | - Yueying Liang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry, University, Nanjing, 210037, China.
| | - Shuai Gong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry, University, Nanjing, 210037, China.
| | - Zhiyuan Meng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry, University, Nanjing, 210037, China.
| | - Mingxing Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry, University, Nanjing, 210037, China.
| | - Zhonglong Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry, University, Nanjing, 210037, China.
| | - Shifa Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry, University, Nanjing, 210037, China.
| |
Collapse
|
10
|
Su H, Ji X, Zhang J, Wang N, Wang H, Liu J, Jiao J, Zhao W. Red-emitting Fluorescent Probe for Visualizing Endogenous Peroxynitrite in Live Cells and Inflamed Mouse Model. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Gibel-Russo R, Benacom D, Di Nardo AA. Non-Cell-Autonomous Factors Implicated in Parvalbumin Interneuron Maturation and Critical Periods. Front Neural Circuits 2022; 16:875873. [PMID: 35601531 PMCID: PMC9115720 DOI: 10.3389/fncir.2022.875873] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
From birth to adolescence, the brain adapts to its environmental stimuli through structural and functional remodeling of neural circuits during critical periods of heightened plasticity. They occur across modalities for proper sensory, motor, linguistic, and cognitive development. If they are disrupted by early-life adverse experiences or genetic deficiencies, lasting consequences include behavioral changes, physiological and cognitive deficits, or psychiatric illness. Critical period timing is orchestrated not only by appropriate neural activity but also by a multitude of signals that participate in the maturation of fast-spiking parvalbumin interneurons and the consolidation of neural circuits. In this review, we describe the various signaling factors that initiate critical period onset, such as BDNF, SPARCL1, or OTX2, which originate either from local neurons or glial cells or from extracortical sources such as the choroid plexus. Critical period closure is established by signals that modulate extracellular matrix and myelination, while timing and plasticity can also be influenced by circadian rhythms and by hormones and corticosteroids that affect brain oxidative stress levels or immune response. Molecular outcomes include lasting epigenetic changes which themselves can be considered signals that shape downstream cross-modal critical periods. Comprehensive knowledge of how these signals and signaling factors interplay to influence neural mechanisms will help provide an inclusive perspective on the effects of early adversity and developmental defects that permanently change perception and behavior.
Collapse
|