1
|
Gao Y, Peng Y, Shi L, Zhang S, Bai R, Lang Y, He Y, Zhang B, Zhang Z, Zhang X. A colorimetric fluorescent probe for reversible detection of HSO 3-/H 2O 2 and effective discrimination of HSO 3-/ClO - and its application in food and bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125275. [PMID: 39481270 DOI: 10.1016/j.saa.2024.125275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024]
Abstract
In view of the significant role of reactive sulfur species (RSS) and reactive oxygen species (ROS) in maintaining the redox homeostasis of organisms, we proposed a colorimetric fluorescent probe (HTN) for reversible detection of HSO3-/H2O2 and effective discrimination of HSO3-/ClO-. C = C is the active site for the Michael addition of HSO3- and the oxidation of ClO-. When HTN interacts with HSO3- and ClO-, it exhibits fluorescence quenching. The addition of oxidizing H2O2 to the system can restore the conjugate structure of the addition product of HSO3- (HTN-HSO3-) and the fluorescence recovery, but it cannot restore the structure of the oxidation product of ClO- (HTN-ClO-). By studying the change of the reversibility/non-reversibility of the probe structure with the addition of H2O2, the purpose of reversible detection of HSO3-/H2O2 and distinguishing HSO3-/ClO- is achieved. In addition, HTN can not only be used as a fluorescent ink to detect HSO3- on the test paper, but also has excellent detection effect on HSO3- and ClO- in real food samples and water samples. Meantime, HTN has good biocompatibility and can target mitochondria to achieve reversible detection of HSO3-/H2O2 and effective discrimination of HSO3-/ClO- in living cells. Therefore, HTN has great potential as a molecular tool for studying redox homeostasis in the interaction network of complex living systems.
Collapse
Affiliation(s)
- Yuexing Gao
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Yan Peng
- Affiliated Hospital, North China University of Science and Technology, Tangshan 063008, China
| | - Lei Shi
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China.
| | - Siyun Zhang
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Ruiyang Bai
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Yunhe Lang
- College of Pharmacy, North China University of Science and Technology, Tangshan 063210, China
| | - Yonggui He
- Affiliated Hospital, North China University of Science and Technology, Tangshan 063008, China
| | - Buyue Zhang
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Ziyi Zhang
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Xiufeng Zhang
- College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China.
| |
Collapse
|
2
|
Yang Y, Yan X, Liang T, Tian M, Wu C, Tang L, Sun X, Zhang J, Li Y, Zhong K. A novel fluorescence probe for ultrafast detection of SO 2 derivatives/biogenic amines and its multi-application: Detecting food and fish freshness, fluorescent dye and bioimaging. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134003. [PMID: 38492394 DOI: 10.1016/j.jhazmat.2024.134003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
In this study, we have effectively prepared a novel fluorescent probe named HDXM based on benzopyran derivatives for the ultrafast detection (within 3 s) of SO2 derivatives or biogenic amines. HDXM showed a noticeable color change after the addition of SO2 derivatives (from purple to colorless) or biogenic amines (from purple to blue), indicating that HDXM can identify two analytes with the naked eye. It is worth noting that HDXM can be used to detect SO2 derivatives in actual sugar samples, and to image HSO3-/SO32- in living cells. More importantly, sensing labels (HDXM-loaded filter paper or agarose hydrogel) enable real-time visual monitoring of salmon freshness through colorimetric and fluorescence dual channels. Compared with the Chinese national standard method, the sensing label is an effective tool for evaluating the freshness of fish. Benefiting from its excellent solubility and fluorescence performance, HDXM can be used as a versatile fluorescent material in various applications, including flexible films, glass coatings, impregnating dyes, printing, and fingerprint ink. HDXM is expected to be a promising and valuable multifunctional tool for food safety and fluorescent materials.
Collapse
Affiliation(s)
- YaXin Yang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Xiaomei Yan
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, China
| | - Tianyu Liang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Mingyu Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Chengyan Wu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Lijun Tang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China; Food Safety Key Lab of Liaoning Province, Jinzhou 121013, China.
| | - Xiaofei Sun
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China; Food Safety Key Lab of Liaoning Province, Jinzhou 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China
| | - Jinglin Zhang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China..
| | - Yang Li
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Keli Zhong
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China; Institute of Ocean, Bohai University, Jinzhou 121013, China; Food Safety Key Lab of Liaoning Province, Jinzhou 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China..
| |
Collapse
|
3
|
Tian Q, Lu X, He W. Structure-regulated mitochondrial-targeted fluorescent probe for sensing and imaging SO 2in vivo. Bioorg Chem 2023; 138:106656. [PMID: 37329811 DOI: 10.1016/j.bioorg.2023.106656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/24/2023] [Accepted: 06/04/2023] [Indexed: 06/19/2023]
Abstract
SO2 and its derivatives play an important role in the antioxidation and anticorrosion of food and medicine. In biological systems, abnormal levels of SO2 lead to the occurrence of many biological diseases. Hence, the development of suitable tools for monitoring SO2 in mitochondria is beneficial for studying the biological effect of SO2 in subcellular organelles. In this research, DHX-1 and DHX-2 are fluorescent probes designed on the basis of dihydroxanthene skeletons. Importantly, DHX-1 (650 nm) and DHX-2 (748 nm) show near-infrared fluorescence response toward endogenous and exogenous SO2, which showed advantages of great selectivity, good sensitivity and low cytotoxicity, and the detection limit is 5.6 μM and 4.08 μM of SO2, respectively. Moreover, DHX-1 and DHX-2 realized SO2 sensing in HeLa cells and zebrafish. Moreover, cell imaging demonstrated that DHX-2 with a thiazole salt structure possesses good mitochondria-targeting ability. Additionally, DHX-2 was perfectly achieved by in situ imaging of SO2 in mice.
Collapse
Affiliation(s)
- Qinqin Tian
- Department of Chemistry, School of Pharmacy, Air Force Military Medical University, 169 Changle West Road, Xi'an 710032, PR China
| | - Xianlin Lu
- Department of Chemistry, School of Pharmacy, Air Force Military Medical University, 169 Changle West Road, Xi'an 710032, PR China
| | - Wei He
- Department of Chemistry, School of Pharmacy, Air Force Military Medical University, 169 Changle West Road, Xi'an 710032, PR China.
| |
Collapse
|
4
|
Yi M, Zhang N, Liu X, Liu J, Zhang X, Wei Y, Shangguan D. A mitochondria-targeted fluorescent probe for imaging of endogenous carbon monoxide in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122377. [PMID: 36696860 DOI: 10.1016/j.saa.2023.122377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Carbon monoxide (CO), a vital gasotransmitter, plays critical functions in many physiological processes. Mitochondrial CO is closely related to mitochondrial respiration, thus the detection and imaging of mitochondrial CO in living cells is very important and has attracted much attention recently. In this paper, we developed a hemicyanine-based off-on fluorescent probe, CO-H1, which was used for monitoring endogenous mitochondrial CO levels in living cells. After reacted with CO in the presence of PdCl2, the fluorescence of CO-H1 was enhanced notably, accompanied by a significant red shift of absorption. CO-H1 exhibits low cytotoxicity, high sensitivity (detection limit of 0.048 μM), and good selectivity for CO. When incubated with living cells, probe CO-H1 mainly entered the mitochondria. CO-H1 was successfully applied to imaging the exogenous/endogenous mitochondrial CO in living cells, suggesting its potential application for further studying the biological functions of mitochondrial CO in living cells.
Collapse
Affiliation(s)
- Mengwen Yi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021, Guangxi, China
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangru Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongbiao Wei
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Guangxi Medical University, No. 22, Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Crawford H, Dimitriadi M, Bassin J, Cook MT, Abelha TF, Calvo‐Castro J. Mitochondrial Targeting and Imaging with Small Organic Conjugated Fluorophores: A Review. Chemistry 2022; 28:e202202366. [PMID: 36121738 PMCID: PMC10092527 DOI: 10.1002/chem.202202366] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 12/30/2022]
Abstract
The last decade has seen an increasingly large number of studies reporting on the development of novel small organic conjugated systems for mitochondrial imaging exploiting optical signal transduction pathways. Mitochondria are known to play a critical role in a number of key biological processes, including cellular metabolism. Importantly, irregularities on their working function are nowadays understood to be intimately linked to a range of clinical conditions, highlighting the importance of targeting mitochondria for therapeutic benefits. In this work we carry out an in-depth evaluation on the progress to date in the field to pave the way for the realization of superior alternatives to those currently existing. The manuscript is structured by commonly used chemical scaffolds and comprehensively covers key aspects factored in design strategies such as synthetic approaches as well as photophysical and biological characterization, to foster collaborative work among organic and physical chemists as well as cell biologists.
Collapse
Affiliation(s)
- Hannah Crawford
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Maria Dimitriadi
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Jatinder Bassin
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Michael T. Cook
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| | - Thais Fedatto Abelha
- Department of Pharmacology, Toxicology and Therapeutic ChemistryFaculty of Pharmacy and Food ScienceUniversity of Barcelona08028BarcelonaSpain
- Institute of Nanoscience and NanotechnologyUniversity of Barcelona (IN2UB)08028BarcelonaSpain
| | - Jesus Calvo‐Castro
- School of Life and Medical SciencesUniversity of HertfordshireAL109ABHatfieldUK
| |
Collapse
|