1
|
Bello AK, Abdullahi MT, Tahir MN, Al-Saadi AA. SERS activity of silver nanoparticles and silver-modified 2D graphitic carbon nitride towards ciprofloxacin drug. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125237. [PMID: 39378830 DOI: 10.1016/j.saa.2024.125237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Herein, silver nanoparticles (AgNPs) and silver-loaded graphitic carbon nitride (Ag@g-C3N4) nanocomposites have been synthesized and used as an effective surface-enhanced Raman scattering (SERS) substrates for the detection of low concentrations (10-14 M) of ciprofloxacin (CIP), a commonly bioactive medication used to treat bacterial illnesses. A combined approach of vibrational spectroscopy and density functional theory (DFT) has been developed to understand the possible modes of analyte (CIP) and SERS substrate (AgNPs and Ag@g-C3N4) interactions. Furthermore, it has been noticed that the behavior of drug molecules in terms of SERS response and energetics of interaction changed significantly when interacted with the noble metal AgNPs decorated onto the g-C3N4 framework in comparison to only AgNPs as substrate. The most prominent interaction scenario between AgNPs and CIP is likely to be through the -NH moiety of drug molecule with an interaction energy of -306 kcal/mol. Whereas, the CIP molecules adsorbed onto Ag@g-C3N4 nanocomposite were more flexible with interaction energy of -107 kcal/mol, suggesting a greater association of analyte with the skeletal modes of substrate leading to Raman enhancements in the low wavenumber region i.e. below 600 cm-1. Hence, the Ag@g-C3N4 nanocomposite-based SERS substrates investigated served two distinct spectral ranges, making them complementary of each other in terms of SERS detection of CIP. The characteristics of the computed frontier molecular orbitals indicated a pronounced amount of charge transfer between the drug and the substrate, highlighting the significance of the chemical mechanism of the overall process. These results represent a successful approach to have an extended spectral range that covers lower wavenumber shifts by applying simple and meaningful modifications to the normally utilized noble metal-based nanoparticles, which can lead to more effective and reliable detection of bioactive drugs.
Collapse
Affiliation(s)
- Abdulraheem K Bello
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Mohammed T Abdullahi
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Muhammad N Tahir
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia; Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Abdulaziz A Al-Saadi
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia; Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
2
|
Li T, Zhang J, Bu P, Wu H, Guo J, Guo J. Multi-modal nanoprobe-enabled biosensing platforms: a critical review. NANOSCALE 2024; 16:3784-3816. [PMID: 38323860 DOI: 10.1039/d3nr03726f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Nanomaterials show great potential for applications in biosensing due to their unique physical, chemical, and biological properties. However, the single-modal signal sensing mechanism greatly limits the development of single-modal nanoprobes and their related sensors. Multi-modal nanoprobes can realize the output of fluorescence, colorimetric, electrochemical, and magnetic signals through composite nanomaterials, which can effectively compensate for the defects of single-modal nanoprobes. Following the multi-modal nanoprobes, multi-modal biosensors break through the performance limitation of the current single-modal signal and realize multi-modal signal reading. Herein, the current status and classification of multi-modal nanoprobes are provided. Moreover, the multi-modal signal sensing mechanisms and the working principle of multi-modal biosensing platforms are discussed in detail. We also focus on the applications in pharmaceutical detection, food and environmental fields. Finally, we highlight this field's challenges and development prospects to create potential enlightenment.
Collapse
Affiliation(s)
- Tong Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiani Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pengzhi Bu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoping Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiuchuan Guo
- University of Electronic Science and Technology of China, Chengdu, China.
| | - Jinhong Guo
- School of Sensing Science and Engineering, Shanghai Jiao Tong, University, Shanghai, China.
| |
Collapse
|
3
|
Lascu A, Vlascici D, Birdeanu M, Epuran C, Fratilescu I, Fagadar-Cosma E. The Influence of the Nature of the Polymer Incorporating the Same A 3B Multifunctional Porphyrin on the Optical or Electrical Capacity to Recognize Procaine. Int J Mol Sci 2023; 24:17265. [PMID: 38139093 PMCID: PMC10743720 DOI: 10.3390/ijms242417265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The multifunctionality of an A3B mixed-substituted porphyrin, namely 5-(4-carboxyphenyl)-10,15,20-tris(4-methylphenyl)porphyrin (5-COOH-3MPP), was proven due to its capacity to detect procaine by different methods, depending on the polymer matrix in which it is incorporated. The hybrid nanomaterial containing k-carrageenan and AuNPs (5-COOH-3MPP-k-carrageenan-AuNPs) was able to optically detect procaine in the concentration range from 5.76 × 10-6 M to 2.75 × 10-7 M, with a limit of detection (LOD) of 1.33 × 10-7 M. This method for the detection of procaine gave complementary results to the potentiometric one, which uses 5-COOH-3MPP as an electroactive material incorporated in a polyvinylchloride (PVC) membrane plasticized with o-NPOE. The detected concentration range by this ion-selective membrane electrode is wider (enlarged in the field of higher concentrations from 10-2 to 10-6 M), linearly dependent with a 53.88 mV/decade slope, possesses a detection limit of 7 × 10-7 M, a response time of 60 s, and has a certified stability for a working period of six weeks.
Collapse
Affiliation(s)
- Anca Lascu
- Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Ave. 24, 300223 Timisoara, Romania; (A.L.); (C.E.); (I.F.)
| | - Dana Vlascici
- Faculty of Chemistry, Biology, Geography, West University of Timisoara, 4 Vasile Parvan Ave., 300223 Timisoara, Romania;
| | - Mihaela Birdeanu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Street 1, 300224 Timisoara, Romania;
| | - Camelia Epuran
- Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Ave. 24, 300223 Timisoara, Romania; (A.L.); (C.E.); (I.F.)
| | - Ion Fratilescu
- Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Ave. 24, 300223 Timisoara, Romania; (A.L.); (C.E.); (I.F.)
| | - Eugenia Fagadar-Cosma
- Institute of Chemistry “Coriolan Dragulescu”, Mihai Viteazu Ave. 24, 300223 Timisoara, Romania; (A.L.); (C.E.); (I.F.)
| |
Collapse
|
4
|
Zhang Q, Mi SN, Xie YF, Yu H, Guo YH, Yao WR. Core-shell Au@MIL-100 (Fe) as an enhanced substrate for flunixin meglumine ultra-sensitive detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122018. [PMID: 36332394 DOI: 10.1016/j.saa.2022.122018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to develop and validate a simple and efficient surface-enhanced Raman spectroscopy (SERS) method to determine flunixin meglumine (FM) residues in animal tissues through using core-shell Au@MIL-100 (Fe) as enhanced substrate. Au@MIL-100 (Fe) composite material was synthesized by coating metal-organic framework materials (MOFs) on the surface of gold nanoparticles using the solvothermal method. Transmission electron microscopy (TEM), UV-vis spectrum, SERS spectrum, X-ray diffraction (XRD), Infrared spectrum (FT-IR), and EDX elemental mapping results revealed that the structural composition of the compound has good properties with localized surface plasmon resonance (LSPR) properties, high adsorption capacity, excellent SERS sensitivity and stability. When it was used as SERS substrate, the results of quantitative analysis of FM in pork showed a linear range of 0.10-50 mg·L-1 with a correlation coefficient (R2) of 0.9819, the limit of detection (LOD) of 0.15 mg·g-1, the recovery rate of 88.94%∼104.77%, the intra- and inter- batch relative standard deviation (RSD) of 3.57%∼14.22% and 0.18%∼3.44% respectively. Further verification results of the existing standard methods showed no significant difference between the SERS and UV methods (P < 0.05), as well as demonstrating that the SERS method has optimal precision, accuracy, and practicality. These results exposed that Au@MIL-100 (Fe) as a SERS substrate has great potential in rapid and on-site detection analysis.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Shu-Na Mi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Yun-Fei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Ya-Hui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Wei-Rong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|