1
|
Wang J, Cui X, Lun S, Yang D, Gao C, Zhang K, Yan Y. A FRET/TICT based multifunctional fluorescent probe for the monitoring of SO 2 derivatives and viscosity in living cells and real samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125074. [PMID: 39232310 DOI: 10.1016/j.saa.2024.125074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
SO2 derivatives and viscosity are important intracellular indicators, which are closely associated with various physiological metabolisms in organisms. The unregulated contents of SO2 derivatives and viscosity in vivo commonly related to some disorders. In this work, probe JFT was developed relying on FRET and TICT mechanisms for the simultaneous detection of SO2 derivatives and viscosity. JFT can rapidly detect viscosity levels with continuously enhanced fluorescence signals at 582 nm basing on the increasing of viscosity. Moreover, JFT was also sensitive to the changes of SO2 derivatives level with a low detection limit (61.5 nM), rapid responding time (with 16 min), excellent selectivity and anti-interference capacity. JFT could detect bisulfite in real water, wine and food samples with high accuracy and recovery rate. Cell imaging indicated that JFT could monitor the endogenous SO2 derivatives and viscosity in mitochondria. Importantly, JFT could recognize the cancer cells basing on the cell imaging difference of JFT in AGS and GES-1 cells.
Collapse
Affiliation(s)
- Jianfeng Wang
- School of Public Health, Jining Medical University, Jining, Shandong 272067, PR China
| | - Xiaoling Cui
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Shenghui Lun
- School of Public Health, Jining Medical University, Jining, Shandong 272067, PR China
| | - Di Yang
- College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276000, PR China
| | - Chang Gao
- School of Mental Health, Jining Medical University, Jining, Shandong 272067, PR China
| | - Kaiyuan Zhang
- College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276000, PR China.
| | - Yehao Yan
- School of Public Health, Jining Medical University, Jining, Shandong 272067, PR China.
| |
Collapse
|
2
|
Wang J, Li R, Ou T, Fu Y, Gao C, Yan Y. A dual-response fluorescence sensor for SO 2 derivatives and polarity and its application in real water and food samples. RSC Adv 2024; 14:35638-35643. [PMID: 39524086 PMCID: PMC11544593 DOI: 10.1039/d4ra04805a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
As an important gaseous pollutant, SO2 derivatives generally exist and significantly threaten the environment and organism health. Meanwhile, polarity is a disease-related indicator in the organism's microenvironment, where an unregulated variation may disturb the physiological metabolisms. Hence, a superior FRET-based fluorescent sensor (TLA) is presented to track polarity and sulfur dioxide derivatives by dual emission channel, i.e. an elevated red emission at 633 nm with decreasing polarity as well as a reduced red emission at 633 nm and improved blue emission at 449 nm with increasing concentration of SO2 derivatives. The probe TLA could sensitively detect SO2 derivatives with ultra-large Stokes shift (273 nm), excellent stability, high selectivity, and low detection limit. Importantly, TLA can accurately detect sulfur dioxide derivatives in real food as well as water samples. Besides, TLA was also fabricated as testing strips and applied to detect SO2 derivatives in the solution.
Collapse
Affiliation(s)
- Jianfeng Wang
- School of Public Health, Jining Medical University Jining Shandong 272067 P. R. China
| | - Ruiji Li
- School of Pharmacy, Jining Medical University Shandong 276826 P. R. China
| | - Tao Ou
- School of Pharmacy, Jining Medical University Shandong 276826 P. R. China
| | - Yamin Fu
- School of Chemistry and Chemical Engineering, Hainan University Haikou 570228 P. R. China
| | - Chang Gao
- School of Public Health, Jining Medical University Jining Shandong 272067 P. R. China
| | - Yehao Yan
- School of Public Health, Jining Medical University Jining Shandong 272067 P. R. China
| |
Collapse
|
3
|
Yao JY, Li L, Xu JX, Liu YH, Shi J, Yu XQ, Kong QQ, Li K. Real-Time Monitoring of Tyrosine Hydroxylase Activity with a Ratiometric Fluorescent Probe. Anal Chem 2024; 96:7082-7090. [PMID: 38652135 DOI: 10.1021/acs.analchem.4c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Parkinson's disease (PD) represents the second most widespread neurodegenerative disease, and early monitoring and diagnosis are urgent at present. Tyrosine hydroxylase (TH) is a key enzyme for producing dopamine, the levels of which can serve as an indicator for assessing the severity and progression of PD. This renders the specific detection and visualization of TH a strategically vital way to meet the above demands. However, a fluorescent probe for TH monitoring is still missing. Herein, three rationally designed wash-free ratiometric fluorescent probes were proposed. Among them, TH-1 exhibited ideal photophysical properties and specific dual-channel bioimaging of TH activity in SH-SY5Y nerve cells. Moreover, the probe allowed for in vivo imaging of TH activity in zebrafish brain and living striatal slices of mice. Overall, the ratiometric fluorescent probe TH-1 could serve as a potential tool for real-time monitoring of PD in complex biosystems.
Collapse
Affiliation(s)
- Jia-Yi Yao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Lu Li
- Orthopedic Department, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Ji-Xuan Xu
- Orthopedic Department, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Jing Shi
- Orthopedic Department, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Qing-Quan Kong
- Orthopedic Department, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|
4
|
Zheng Y, Zhai SM, Xiao MM, Dong PZ, Xu JR, Zhao BX. A novel ratiometric fluorescence probe based on the FRET-ICT mechanism for detecting fluoride ions and viscosity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123822. [PMID: 38176193 DOI: 10.1016/j.saa.2023.123822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Fluoride ion is not only important for dental health, but also a contributing factor in a variety of diseases. At the same time, fluoride ions and cell viscosity are both important to the physiological environment of mitochondria. We developed a dual-response ratiometric fluorescent probe BDF based on Förster resonance energy transfer (FRET) and intramolecular charge transfer (ICT) mechanism for the detection of F- and viscosity. BDF has an outstanding intramolecular energy transfer efficiency of 97.7% and shows excellent performance for fluorine ion detection. In addition, when the system viscosity increases, the fluorescence emission intensity of BDF is greatly heightened, indicating the possibility of viscosity detection. Finally, based on the fluorescence properties of BDF, we used the probe to detect F- in the toothpaste sample and image exogenous fluoride ions in HeLa cells.
Collapse
Affiliation(s)
- Yi Zheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Shu-Mei Zhai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| | - Meng-Min Xiao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Pei-Zhen Dong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Jia-Rui Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Bao-Xiang Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| |
Collapse
|
5
|
Gao Y, Song G, Shi G, Xiao J, Yuan C, Ge Y. Simple and Commercially Available 6-chloroimidazo[1,2-a]pyridine-2-carboxylic Acid-based Fluorescent Probe for Monitoring pH Changes. J Fluoresc 2023; 33:305-309. [PMID: 36414919 DOI: 10.1007/s10895-022-03086-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022]
Abstract
Commercially available compounds that can be directly used as fluorescent probes will greatly promote the development of fluorescent imaging. Based on our previously work related to nitrogen bridgehead heterocycles, herein, a commercially available compound, 6-chloroimidazo[1,2-a]pyridine-2-carboxylic acid, has been detected for monitoring pH value (3.0-7.0). The probe proves to have high selectivity and sensitivity, brilliant reversibility, and extremely short response time. The real-time imaging of pH changes in yeast was also conducted.
Collapse
Affiliation(s)
- Yunlong Gao
- Center for Disease Control and Prevention of Weifang Binhai Economic-Technological Development Area, Weifang, Shandong, People's Republic of China
| | - Guangle Song
- Department of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 619, Changcheng Road, Taian, Shandong, 271016, People's Republic of China
| | - Guowei Shi
- Department of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 619, Changcheng Road, Taian, Shandong, 271016, People's Republic of China
| | - Jixiang Xiao
- Department of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 619, Changcheng Road, Taian, Shandong, 271016, People's Republic of China
| | - Chunhao Yuan
- Department of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 619, Changcheng Road, Taian, Shandong, 271016, People's Republic of China
| | - Yanqing Ge
- Department of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 619, Changcheng Road, Taian, Shandong, 271016, People's Republic of China.
| |
Collapse
|