1
|
Kazemi SY. Photoinduced Chemiluminescence Determination of Prednisolone Using Lucigenin-Cobalt 5,10,15,20-Tetra(4-Pyridyl)-21H,23H-Porphine System. LUMINESCENCE 2025; 40:e70096. [PMID: 39844749 DOI: 10.1002/bio.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/28/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025]
Abstract
Sensitive and precise assay of prednisolone, a steroid hormone, has received great attention due to its significant role in the treatment of a series of diseases. In this study, we have developed a simple, quick, and accurate technique in this part to measure prednisolone. Cobalt 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine (CoTPyP) as a mimic peroxidase catalyzes the chemiluminescence (CL) reaction of lucigenin for the first time. CoTPyP has a great impact on the CL signal. Furthermore, the CL system has been successfully used for the prednisolone flow-injection test. The findings showed that the UV irradiation of prednisolone led to an unimolecular photochemical reaction that could enhance yield of high-energy intermediate and cause higher CL emission. Under ideal experimental circumstances, CL intensity was shown to be proportionate to prednisolone concentration in the range of 0.1-170 μg mL-1 (r = 0.9925, n = 4). A detection limit of 0.072 μg mL-1 was observed. Compared with the HPLC approach, our proposed method provides a sensitive, fast, and efficient analysis of prednisolone in pharmaceutical formulations and biological fluids.
Collapse
Affiliation(s)
- Sayed Yahya Kazemi
- Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| |
Collapse
|
2
|
Skok A, Manousi N, Anthemidis A, Bazel Y. Automated Systems with Fluorescence Detection for Metal Determination: A Review. Molecules 2024; 29:5720. [PMID: 39683879 DOI: 10.3390/molecules29235720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Industrialization has led to environmental pollution with various hazardous chemicals including pollution with metals. In this regard, the development of highly efficient analytical methods for their determination has received considerable attention to ensure public safety. Currently, scientists are paying more and more attention to the automation of analytical methods, since it permits fast, accurate, and sensitive analysis with minimal exposure of analysts to hazardous substances. This review discusses the automated methods with fluorescent detection developed for metal determination since 2000. It is evident that flow-injection analysis (FIA) with no preconcentration or with solid-phase preconcentration are predominant compared to liquid-phase preconcentration systems. FIA systems are also more widespread than sequential injection analysis (SIA) systems. Moreover, a significant number of works have been devoted to chromatography-based methods. Atomic fluorescence detectors significantly prevail over molecular fluorescence detectors. It must be highlighted that most of the methods result in good figures of merit and performance characteristics, demonstrating their superiority in comparison with manual systems.
Collapse
Affiliation(s)
- Arina Skok
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Safarik University in Kosice, Moyzesova 11, 040 01 Kosice, Slovakia
| | - Natalia Manousi
- Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Aristidis Anthemidis
- Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Yaroslav Bazel
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Safarik University in Kosice, Moyzesova 11, 040 01 Kosice, Slovakia
| |
Collapse
|
3
|
Zhang Y, Wang X, Jia C, Dong Y. Sensitive detection of uric acid based on low-triggering-potential cathodic luminol electrochemiluminescence achieved by ReS 2 nanosheets. Anal Bioanal Chem 2024; 416:4887-4896. [PMID: 38953916 DOI: 10.1007/s00216-024-05414-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/30/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
The majority of previously reported cathodic electrochemiluminescence (ECL) systems often required very negative potential to be carried out, which has greatly limited their applications in the sensing field. Screening high-performance cathodic ECL systems with low triggering potential is a promising way to broaden their applications. In this work, rhenium disulfide nanosheets (ReS2 NS) have been revealed as an efficient co-promoter to realize low-triggering-potential cathodic luminol ECL. One strong cathodic ECL signal appeared at a potential of -0.3 V and one anodic ECL peak was obtained at -0.15 V under the reverse potential scan, which were caused by electrogenerated reactive oxygen species (ROS) from hydrogen peroxide. The generation of strong luminol ECL at low potential was the result of the electrocatalytic effect of ReS2 NS on the reduction of H2O2. The scavenging effect of uric acid (UA) on the ROS could significantly inhibit the cathodic ECL. As a result, an ECL sensor was proposed, which showed outstanding performance for the detection of UA in the range of 10 nM to 0.1 mM with a low detection limit of 1.53 nM. Moreover, the ECL sensor was successfully applied in the sensitive detection of UA in real samples. This work provides a new avenue to establish a low-potential cathodic ECL system, which will sufficiently expand the potential application of cathodic ECL in the sensing field.
Collapse
Affiliation(s)
- Yahui Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, Anhui, China
| | - Xinyi Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, Anhui, China
| | - Changbo Jia
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, Anhui, China
| | - Yongping Dong
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, Anhui, China.
| |
Collapse
|
4
|
Liu H, Liu F, Ji K, Zholudov YT, Mostafa IM, Lou B, Zhang W, Xu G. Much Stronger Chemiluminescence of 9-Mesityl-10-methylacridinium Ion than Lucigenin at Neutral Conditions for Co 2+ Detection. Anal Chem 2023; 95:13614-13619. [PMID: 37639529 DOI: 10.1021/acs.analchem.3c02386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
9-Mesityl-10-methylacridinium ion (Acr+-Mes) is a donor-acceptor molecule with a much longer lifetime and a higher energy electron transfer excited state than natural photosynthetic reaction centers. Unlike lucigenin with a coplanar geometry, Acr+-Mes has an orthogonal geometry. There is no π conjugation between Acr+ and Mes. Due to its special electron donor-acceptor structure, it does not rely on strong alkalinity to generate an electron transfer state like lucigenin, which makes it possible to achieve chemiluminescence (CL) under weakly alkaline or neutral conditions. In this study, we report Acr+-Mes CL for the first time. Acr+-Mes generates about 400 times stronger CL intensity than lucigenin under neutral conditions (pH = 7) using KHSO5 as the coreactant. Moreover, Co2+ can enhance Acr+-Mes/KHSO5 CL remarkably. Acr+-Mes/KHSO5 CL enables Co2+ detection with a linear range of 0.5-500 nM and a limit of detection of 28 pM (S/N = 3). This method was tested for the detection of Co2+ in lake water, and the standard recovery rate of 96.8-107% was achieved. This study provides a new way to develop efficient CL systems in neutral solutions.
Collapse
Affiliation(s)
- Hongzhan Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fangshuo Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kaixiang Ji
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Yuriy T Zholudov
- Laboratory of Analytical Optochemotronics, Biomedical Engineering Department, Kharkiv National University of Radio Electronics, Kharkiv 61166, Ukraine
| | - Islam M Mostafa
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Baohua Lou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Wei Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
5
|
Shao T, Song X, Jiang Y, Wang C, Li P, Sun S, Wang D, Wei W. Vanillin-Catalyzed highly sensitive luminol chemiluminescence and its application in food detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122535. [PMID: 36857865 DOI: 10.1016/j.saa.2023.122535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/03/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Among various chemiluminescence (CL) systems, luminol-H2O2 system is used extensively due to its cheapness and sensitivity. Herein, 4-hydroxy-3-methoxybenzaldehyde, known as vanillin, was firstly found to be able to catalyze H2O2 very efficiently to produce •OH and O2•-, which can be used to enhance the CL of luminol-H2O2 as Co+. In alkaline aqueous solution, vanillin catalyzed the dissociation of H2O2 into active •OH and O2•- radicals and accelerated luminol-H2O2 reaction to emit strong CL signal. Combining the stabilizing function of β-CD, CL intensity of luminol-H2O2 was enhanced further. Thus, dual-signal amplification of luminol-H2O2 chemiluminescence based on the catalyzing function of vanillin and the stabilizing function of β-CD was proposed and its mechanism was explored deeply in the manuscript. Interestingly, vanillin is a highly prized flavor compound broadly used as food additive, however, the excessive intake of vanillin is harmful to human and thus the determination of vanillin is very important. On the basis of the luminol-β-CD-H2O2/vanillin reaction, a low-cost, rapid and simple CL sensor has been established to detect vanillin. The sensor was able to detect vanillin in the range of 1.0 μM ∼ 75 μM with a detection limit of 0.89 μM (S/N = 3). It can also be used for CL imaging detection with satisfactory results.
Collapse
Affiliation(s)
- Tong Shao
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Xiaolei Song
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Yufeng Jiang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Chenchen Wang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Peng Li
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Shihao Sun
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Dingzhong Wang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Wei Wei
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China.
| |
Collapse
|
6
|
Ji K, Xia S, Sang X, Zeid AM, Hussain A, Li J, Xu G. Enhanced Luminol Chemiluminescence with Oxidase-like Properties of FeOOH Nanorods for the Sensitive Detection of Uric Acid. Anal Chem 2023; 95:3267-3273. [PMID: 36722089 DOI: 10.1021/acs.analchem.2c04247] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
FeOOH nanorods, as one-dimensional nanomaterials, have been widely used in many fields due to their stable properties, low cost, and easy synthesis, but their application in the field of chemiluminescence (CL) is rarely reported. In this work, FeOOH nanorods were synthesized by a simple and environmentally friendly one-pot hydrothermal method and used for the first time as a catalyst for generating strong CL with luminol without additional oxidant. Remarkably, luminol-FeOOH exhibits about 250 times stronger CL than the luminol-H2O2 system. Its CL intensity was significantly quenched by uric acid. We established a simple, rapid, sensitive, and selective CL method for the detection of uric acid with a linear range of 20-1000 nM and a detection limit of 6.3 nM (S/N = 3). In addition, we successfully applied this method to the detection of uric acid in human serum, and the standard recoveries were 95.6-106.4%.
Collapse
Affiliation(s)
- Kaixiang Ji
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Shiyu Xia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei 230026, China
| | - Xueqing Sang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Abdallah M Zeid
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Altaf Hussain
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei 230026, China
| | - Jianping Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Guobao Xu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|