1
|
Li Z, Hu Y, Wang L, Liu H, Ren T, Wang C, Li D. Selective and Accurate Detection of Nitrate in Aquaculture Water with Surface-Enhanced Raman Scattering (SERS) Using Gold Nanoparticles Decorated with β-Cyclodextrins. SENSORS (BASEL, SWITZERLAND) 2024; 24:1093. [PMID: 38400251 PMCID: PMC10893249 DOI: 10.3390/s24041093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
A surface-enhanced Raman scattering (SERS) method for measuring nitrate nitrogen in aquaculture water was developed using a substrate of β-cyclodextrin-modified gold nanoparticles (SH-β-CD@AuNPs). Addressing the issues of low sensitivity, narrow linear range, and relatively poor selectivity of single metal nanoparticles in the SERS detection of nitrate nitrogen, we combined metal nanoparticles with cyclodextrin supramolecular compounds to prepare a AuNPs substrate enveloped by cyclodextrin, which exhibits ultra-high selectivity and Raman activity. Subsequently, vanadium(III) chloride was used to convert nitrate ions into nitrite ions. The adsorption mechanism between the reaction product benzotriazole (BTAH) of o-phenylenediamine (OPD) and nitrite ions on the SH-β-CD@AuNPs substrate was studied through SERS, achieving the simultaneous detection of nitrate nitrogen and nitrite nitrogen. The experimental results show that BTAH exhibits distinct SERS characteristic peaks at 1168, 1240, 1375, and 1600 cm-1, with the lowest detection limits of 3.33 × 10-2, 5.84 × 10-2, 2.40 × 10-2, and 1.05 × 10-2 μmol/L, respectively, and a linear range of 0.1-30.0 μmol/L. The proposed method provides an effective tool for the selective and accurate online detection of nitrite and nitrate nitrogen in aquaculture water.
Collapse
Affiliation(s)
- Zhen Li
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Key Laboratory of Smart Farming Technologies for Aquatic Animal and Livestock, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yang Hu
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China
- Key Laboratory of Smart Farming Technologies for Aquatic Animal and Livestock, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Liu Wang
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China
- Key Laboratory of Smart Farming Technologies for Aquatic Animal and Livestock, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Houfang Liu
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tianling Ren
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Cong Wang
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China
- Key Laboratory of Smart Farming Technologies for Aquatic Animal and Livestock, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Daoliang Li
- National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, China
- Key Laboratory of Smart Farming Technologies for Aquatic Animal and Livestock, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
2
|
Zhang F, Wang Y, Yang B, Liu J, Yuan Y, Bi S. SERS detection of apramycin and kanamycin through sliver nanoparticles modified with β-cyclodextrin and α-iron oxide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123375. [PMID: 37703789 DOI: 10.1016/j.saa.2023.123375] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Using sliver nanoparticles modified with β-cyclodextrin and α-iron oxide (β-CD/α-Fe2O3@AgNPs) as surface-enhanced Raman spectroscopy (SERS) substrate, two sensitive methods for detecting apramycin and kanamycin were established. The synthesized β-CD/α-Fe2O3@AgNPs were characterized through ultraviolet visible (UV-vis) spectroscopy, transmission electron microscope (TEM), X-ray diffraction (XRD) and thermogravimetric analyses (TGA). The interactions of the two drugs and substrate were researched by UV-vis absorption and fourier transform infrared (FT-IR). The linear relationship between apramycin/kanamycin and SERS intensity was observed. The limits of detection (LODs) (S/N = 3) were 3.42 and 0.31 nmol/L. The two SERS methods were effectively applied to detect apramycin and kanamycin in beef samples and commercial injection. The recoveries were 96.84 - 102.20% with relative standard deviations (RSD) of 0.6---4.0% for apramycin and 95.67 - 103.18% with RSD of 1.4 - 2.5% for kanamycin, respectively.
Collapse
Affiliation(s)
- Fengming Zhang
- College of Chemistry, Changchun Normal University, Changji North Road 677, Changchun 130032, China
| | - Yuting Wang
- College of Chemistry, Changchun Normal University, Changji North Road 677, Changchun 130032, China
| | - Bin Yang
- College of Chemistry, Changchun Normal University, Changji North Road 677, Changchun 130032, China
| | - Jia Liu
- College of Chemistry, Changchun Normal University, Changji North Road 677, Changchun 130032, China
| | - Yue Yuan
- College of Chemistry, Changchun Normal University, Changji North Road 677, Changchun 130032, China
| | - Shuyun Bi
- College of Chemistry, Changchun Normal University, Changji North Road 677, Changchun 130032, China.
| |
Collapse
|
3
|
Cao Y, Sun Y, Yu RJ, Long YT. Paper-based substrates for surface-enhanced Raman spectroscopy sensing. Mikrochim Acta 2023; 191:8. [PMID: 38052768 DOI: 10.1007/s00604-023-06086-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/04/2023] [Indexed: 12/07/2023]
Abstract
Surface-enhanced Raman scattering (SERS) has been recognized as one of the most sensitive analytical methods by adsorbing the target of interest onto a plasmonic surface. Growing attention has been directed towards the fabrication of various substrates to broaden SERS applications. Among these, flexible SERS substrates, particularly paper-based ones, have gained popularity due to their easy-to-use features by full contact with the sample surface. Herein, we reviewed the latest advancements in flexible SERS substrates, with a focus on paper-based substrates. Firstly, it begins by introducing various methods for preparing paper-based substrates and highlights their advantages through several illustrative examples. Subsequently, we demonstrated the booming applications of these paper-based SERS substrates in abiotic and biological matrix detection, with particular emphasis on their potential application in clinical diagnosis. Finally, the prospects and challenges of paper-based SERS substrates in broader applications are discussed.
Collapse
Affiliation(s)
- Yue Cao
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
| | - Yang Sun
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Ru-Jia Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China.
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
4
|
Li L, Zhang L, Gou L, Wei S, Hou X, Wu L. Au Nanoparticles Decorated CoP Nanowire Array: A Highly Sensitive, Anticorrosive, and Recyclable Surface-Enhanced Raman Scattering Substrate. Anal Chem 2023. [PMID: 37450688 DOI: 10.1021/acs.analchem.3c01282] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Metal-semiconductor composites are promising candidates for surface-enhanced Raman scattering (SERS) substrates, but their inert basal plane, poor active sites, and limited stability hamper their commercial prospects. Herein, we report a three-dimensional CoP nanowire array decorated with Au nanoparticles on carbon cloth (Au@CoP/CC) as a self-supporting flexible SERS substrate. The Au nanoparticles spontaneously grew on the surface of the CoP nanowire array to form efficient SERS hot spots by a redox reaction with HAuCl4 without any additional reducing agents. Such Au@CoP/CC substrate exhibited a limit of detection of 10-11 M using rhodamine 6G as a model dye with outstanding corrosion resistance ability even under extreme acid and alkali conditions, which is better than many recently reported Au-based SERS substrates. Finite-difference time-domain simulation results demonstrated that Au@CoP/CC can provide a high density of regions with intense local electric field enhancement. Moreover, Au@CoP/CC can degrade target organic dyes for the self-cleaning and reproduction of SERS-active substrates under visible light irradiation. This work provides a novel means of using the plasmonic metal-transition metal phosphide composites for high-performance SERS sensing and photodegradation.
Collapse
Affiliation(s)
- Ling Li
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| | - Longcheng Zhang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Lichen Gou
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| | - Siqi Wei
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiandeng Hou
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
- Key Lab of Green Chem and Tech of MOE at College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Li Wu
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|