1
|
Li J, Li M, Wang Q, Wang J, Zhu Y, Bu L, Zhang H, Li P, Xu W. Necklace-like Te-Au reticula platform with three dimensional hotspots Surface-Enhanced Raman Scattering (SERS) sensor for food hazards analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:124037. [PMID: 38354678 DOI: 10.1016/j.saa.2024.124037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
In this work, we combined three-dimensional (3D) necklace-like Te-Au reticula as novel surface-enhanced Raman scattering (SERS) active substrates with oxidation-reduction displacement reactions to construct a molecular machine for SERS detection. The structurally tunable 3D necklace-like spatial structures generated more active 'hot spots' and thus enhanced the sensitivity of SERS signals. Besides, layers of ultrathin nanowires showed high sequence dependence that ensure the repeatability and abundant hotspots at interparticle gaps and guarantee the high SERS performance of the substrate. A better-localized surface plasmon resonance (LSPR) effect of the sensor was verified by finite-difference time-domain (FDTD) analysis in both Raman intensities and electromagnetic field distributions compared to the citrate-stabilized AuNPs and CTAB-protected AuNRs. The proposed strategy can also serve as a universally amplified and sensitive detection platform for monitoring different molecules, thus achieving an amplification detection of 3,3'-diethylthiatricarbocyanine iodide (DTTCI) are 1 nM and R6G with a low limit of detection of 1 pM. Especially, the intensity of the main vibration of R6G from 30 spots of SERS data with excellent reproducibility (relative standard deviation of 6.25 %). High selectivity and accuracy of the SERS sensor were proved by practical analysis melamine (MM) in milk with a linear calibration curve (R2 = 0.9962) and a limit of detection of 0.75 mg/kg. Our research provides a new perspective to construct 3D SERS sensor from integrated structural design.
Collapse
Affiliation(s)
- Jingya Li
- Department of Pathology, Anhui University of Chinese Medicine, Hefei 230012, China; University of Science and Technology of China, Hefei 230026, China
| | - Man Li
- Department of Bioengineering, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Qianqian Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Anhui, Hefei 230038, China
| | - Juan Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Anhui, Hefei 230038, China
| | - Yinbo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Linfeng Bu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Hanyuan Zhang
- University of Science and Technology of China, Hefei 230026, China
| | - Pan Li
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, CAS, Hefei 230021, China.
| | - Weiping Xu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, Hefei 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Anhui Provincial Hospital, Anhui, Hefei 230001, China; Gerontology Institute of Anhui Province, Hefei 230001, China.
| |
Collapse
|
2
|
Martins NCT, Fateixa S, Nogueira HIS, Trindade T. Surface-enhanced Raman scattering detection of thiram and ciprofloxacin using chitosan-silver coated paper substrates. Analyst 2023; 149:244-253. [PMID: 38032357 DOI: 10.1039/d3an01449e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Fast detection of contaminants of emerging concern (CECs) in water resources is of great environmental interest. Ideally, sustainable materials should be used in water quality monitoring technologies implemented for such purposes. In this regard, the application of bio-based materials aimed at the fabrication of analytical platforms has become of great importance. This research merges both endeavors by exploring the application of chitosan-coated paper, decorated with silver nanoparticles (AgNPs), on surface-enhanced Raman scattering (SERS) spectroscopy studies of two distinct types of CECs dissolved in aqueous samples: an antibiotic (ciprofloxacin) and a pesticide (thiram). Our results indicate the superior SERS performance of biocoated substrates compared to their non-coated paper counterparts. The detection limits achieved for thiram and ciprofloxacin using the biocoated substrates were 0.024 ppm and 7.7 ppm, respectively. The efficient detection of both analytes is interpreted in terms of the role of the biopolymer in promoting AgNPs assemblies that result in local regions of enhanced SERS activity. Taking advantage of these observations, we use confocal Raman microscopy to obtain Raman images of the substrates using ciprofloxacin and thiram as molecular probes. We also demonstrate that these biobased substrates can be promising for on-site analysis when used in conjunction with portable Raman instruments.
Collapse
Affiliation(s)
- Natércia C T Martins
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Sara Fateixa
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Helena I S Nogueira
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Tito Trindade
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|