1
|
Kuo PH, Chang CW, Chang CC, Yau HT. Synthetic minority oversampling and iterative fluorescence-suppression integrated algorithm for Raman spectrum pesticide detection system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125162. [PMID: 39378829 DOI: 10.1016/j.saa.2024.125162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
Raman spectrum preprocessing method for automatic denoising and suppression of the fluorescent background. In this method, noise is reduced using wavelet transform, and a modified polynomial curve fitting method is implemented such that an algorithm can independently identify the optimal curve parameters for fluorescent background suppression. To address the problem of imbalanced datasets, the present study employed a synthetic minority oversampling technique to increase the volume of data in minority classes. This technique enables the prediction of pesticides that are otherwise difficult to detect, and the prediction accuracy is comparable to that of detection with large data volumes. The proposed convolutional neural network model was verified to accurately identify the type of single pesticides and composition of mixed pesticides. The prediction accuracy for mixed pesticides reached 99.1%.
Collapse
Affiliation(s)
- Ping-Huan Kuo
- Department of Mechanical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan; Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng University, Chiayi 62102, Taiwan.
| | - Chen-Wen Chang
- Department of Electrical Engineering, National Cheng Kung University, Tainan 701401, Taiwan.
| | - Cheng-Chung Chang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402202, Taiwan.
| | - Her-Terng Yau
- Department of Mechanical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan; Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng University, Chiayi 62102, Taiwan.
| |
Collapse
|
2
|
Zhang Q, Lin Y, Lin D, Lin X, Liu M, Tao H, Wu J, Wang T, Wang C, Feng S. Non-invasive screening and subtyping for breast cancer by serum SERS combined with LGB-DNN algorithms. Talanta 2024; 275:126136. [PMID: 38692045 DOI: 10.1016/j.talanta.2024.126136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/06/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Early detection of breast cancer and its molecular subtyping is crucial for guiding clinical treatment and improving survival rate. Current diagnostic methods for breast cancer are invasive, time consuming and complicated. In this work, an optical detection method integrating surface-enhanced Raman spectroscopy (SERS) technology with feature selection and deep learning algorithm was developed for identifying serum components and building diagnostic model, with the aim of efficient and accurate noninvasive screening of breast cancer. First, the high quality of serum SERS spectra from breast cancer (BC), breast benign disease (BBD) patients and healthy controls (HC) were obtained. Chi-square tests were conducted to exclude confounding factors, enhancing the reliability of the study. Then, LightGBM (LGB) algorithm was used as the base model to retain useful features to significantly improve classification performance. The DNN algorithm was trained through backpropagation, adjusting the weights and biases between neurons to improve the network's predictive ability. In comparison to traditional machine learning algorithms, this method provided more accurate information for breast cancer classification, with classification accuracies of 91.38 % for BC and BBD, and 96.40 % for BC, BBD, and HC. Furthermore, the accuracies of 90.11 % for HR+/HR- and 88.89 % for HER2+/HER2- can be reached when evaluating BC patients' molecular subtypes. These results demonstrate that serum SERS combined with powerful LGB-DNN algorithm would provide a supplementary method for clinical breast cancer screening.
Collapse
Affiliation(s)
- Qiyi Zhang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Yuxiang Lin
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China; Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Duo Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Xueliang Lin
- Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices, Quanzhou Normal University, Quanzhou, 362000, China
| | - Miaomiao Liu
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Hong Tao
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Jinxun Wu
- Department of Pathology, Fuzhou Lianjiang Country Hospital, Fuzhou, Fujian, 350500, China
| | - Tingyin Wang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350117, China.
| | - Chuan Wang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China; Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China; Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, 350001, China.
| | - Shangyuan Feng
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian, 350117, China.
| |
Collapse
|
3
|
Kuo PH, Chang CW, Tseng YR, Yau HT. Efficient, automatic, and optimized portable Raman-spectrum-based pesticide detection system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123787. [PMID: 38128328 DOI: 10.1016/j.saa.2023.123787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/08/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Raman spectroscopy can be used for accurately detecting pesticides and determining the chemical composition of a pesticide. To facilitate field detection, the present study used a portable Raman spectrometer for analysis. However, this spectrometer was found to be susceptible to noise interference and signal offsets, which increased the difficulty of pesticide identification. The most commonly used algorithm for Raman spectrum identification is principal component analysis (PCA). However, accurate classification often cannot be achieved with PCA because of the offset and noise in the Raman spectrum data. Therefore, in this study, after the collected Raman spectrum data were processed using the small-step, center-weighted moving-average method, these data were employed to train a convolutional neural network (CNN) model for prediction. To optimize the CNN model, the hyperparameters of the CNN were adjusted using various optimization algorithms, and the optimal solution was obtained after multiple iterations. Data preprocessing and architecture training models were then constructed in a self-optimized manner to improve the ability of the algorithm model to handle diverse types of data. Finally, a CNN model optimized using the cat swarm optimization algorithm was developed. This model was trained on 3000 samples containing three pesticides, and its accuracy for pesticide composition identification was discovered to be 89.33%.
Collapse
Affiliation(s)
- Ping-Huan Kuo
- Department of Mechanical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan; Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng University, Chiayi 62102, Taiwan.
| | - Chen-Wen Chang
- Department of Mechanical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan.
| | - Yung-Ruen Tseng
- Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng University, Chiayi 62102, Taiwan.
| | - Her-Terng Yau
- Department of Mechanical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan; Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng University, Chiayi 62102, Taiwan.
| |
Collapse
|
4
|
Ke X, Liu W, Shen L, Zhang Y, Liu W, Wang C, Wang X. Early Screening of Colorectal Precancerous Lesions Based on Combined Measurement of Multiple Serum Tumor Markers Using Artificial Neural Network Analysis. BIOSENSORS 2023; 13:685. [PMID: 37504084 PMCID: PMC10377288 DOI: 10.3390/bios13070685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023]
Abstract
Many patients with colorectal cancer (CRC) are diagnosed in the advanced stage, resulting in delayed treatment and reduced survival time. It is urgent to develop accurate early screening methods for CRC. The purpose of this study is to develop an artificial intelligence (AI)-based artificial neural network (ANN) model using multiple protein tumor markers to assist in the early diagnosis of CRC and precancerous lesions. In this retrospective analysis, 148 cases with CRC and precancerous diseases were included. The concentrations of multiple protein tumor markers (CEA, CA19-9, CA 125, CYFRA 21-1, CA 72-4, CA 242) were measured by electrochemical luminescence immunoassays. By combining these markers with an ANN algorithm, a diagnosis model (CA6) was developed to distinguish between normal healthy and abnormal subjects, with an AUC of 0.97. The prediction score derived from the CA6 model also performed well in assisting in the diagnosis of precancerous lesions and early CRC (with AUCs of 0.97 and 0.93 and cut-off values of 0.39 and 0.34, respectively), which was better than that of individual protein tumor indicators. The CA6 model established by ANN provides a new and effective method for laboratory auxiliary diagnosis, which might be utilized for early colorectal lesion screening by incorporating more tumor markers with larger sample size.
Collapse
Affiliation(s)
- Xing Ke
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Artificial Intelligence Medicine, Shanghai Academy of Experimental Medicine, Shanghai 200092, China
| | - Wenxue Liu
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lisong Shen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Institute of Artificial Intelligence Medicine, Shanghai Academy of Experimental Medicine, Shanghai 200092, China
| | - Yue Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Liu
- Department of Research Collaboration, R&D Center, Beijing Deepwise & League of PHD Technology Co., Ltd., Beijing 100080, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Nanning Jiuzhouyuan Biotechnology Co., Ltd., Nanning 530007, China
| |
Collapse
|