1
|
Ferreira FHDC, Farrell NP, Costa LAS. Spermine and spermidine SI-PPCs: Molecular dynamics reveals enhanced biomolecular interactions. Int J Biol Macromol 2024; 278:134654. [PMID: 39128748 DOI: 10.1016/j.ijbiomac.2024.134654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
In this paper the effects on the interaction of highly positively charged substitution-inert platinum polynuclear complexes (SI-PPCs) with negatively charged DNA and heparin are examined and compared by theoretical chemistry methods. Electrostatic and hydrogen bonding interactions contribute to the overall effects on the biomolecule. Root Mean Square (RMS) deviation, Solvent Accessible Surface, RMS fluctuation, and interaction analysis all confirm similar effects on both biomolecules, dictated predominantly by the total positive charge and total number of hydrogen bonds formed. Especially, changes in structural parameters suggesting condensation and reduction of available surface area will reduce or prevent normal protein recognition and may thus potentially inhibit biological mechanisms related to apoptosis (DNA) or reduced vascularization viability (HEP). Thermodynamic analyses supported these findings with favourable interaction energies. The comparison of DNA and heparin confirms the general intersectionality between the two biomolecules and confirms the intrinsic dual-nature function of this chemotype. The distinction between the two-limiting mode of actions (HS or DNA-centred) could reflect an intriguing balance between extracellular (GAG) and intracellular (DNA) binding and affinities. The results underline the need to fully understand GAG-small molecule interactions and their contribution to drug pharmacology and related therapeutic modalities. This report contributes to that understanding.
Collapse
Affiliation(s)
- Frederico Henrique do C Ferreira
- NEQC - Núcleo de Estudos em Química Computacional, Departamento de Química, ICE, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Nicholas P Farrell
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284-2006, USA
| | - Luiz Antônio S Costa
- NEQC - Núcleo de Estudos em Química Computacional, Departamento de Química, ICE, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil.
| |
Collapse
|
2
|
Chakraborty A, Samant D, Sarkar R, Sangeet S, Prusty S, Roy S. RNA's Dynamic Conformational Selection and Entropic Allosteric Mechanism in Controlling Cascade Protein Binding Events. J Phys Chem Lett 2024; 15:6115-6125. [PMID: 38830201 DOI: 10.1021/acs.jpclett.4c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
In the TAR RNA of immunodeficiency viruses, an allosteric communication exists between a distant loop and a bulge. The bulge interacts with the TAT protein vital for transactivating viral RNA, while the loop interacts with cyclin-T1, contingent on TAT binding. Through extensive atomistic and free energy simulations, we investigate TAR-TAT binding in nonpathogenic bovine immunodeficiency virus (BIV) and pathogenic human immunodeficiency virus (HIV). Thermodynamic analysis reveals enthalpically driven binding in BIV and entropically favored binding in HIV. The broader global basin in HIV is attributed to binding-induced loop fluctuation, corroborated by nuclear magnetic resonance (NMR), indicating classical entropic allostery onset. While this loop fluctuation affects the TAT binding affinity, it generates a binding-competent conformation that aids subsequent effector (cyclin-T1) binding. This study underscores how two structurally similar apo-RNA scaffolds adopt distinct conformational selection mechanisms to drive enthalpic and entropic allostery, influencing protein affinity in the signaling cascade.
Collapse
Affiliation(s)
- Amrita Chakraborty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Dibyamanjaree Samant
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Raju Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Satyam Sangeet
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Sangram Prusty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| |
Collapse
|
3
|
Mukhopadhyay T, Ghosh A, Datta A. Screening 2D Materials for Their Nanotoxicity toward Nucleic Acids and Proteins: An In Silico Outlook. ACS PHYSICAL CHEMISTRY AU 2024; 4:97-121. [PMID: 38560753 PMCID: PMC10979489 DOI: 10.1021/acsphyschemau.3c00053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 04/04/2024]
Abstract
Since the discovery of graphene, two-dimensional (2D) materials have been anticipated to demonstrate enormous potential in bionanomedicine. Unfortunately, the majority of 2D materials induce nanotoxicity via disruption of the structure of biomolecules. Consequently, there has been an urge to synthesize and identify biocompatible 2D materials. Before the cytotoxicity of 2D nanomaterials is experimentally tested, computational studies can rapidly screen them. Additionally, computational analyses can provide invaluable insights into molecular-level interactions. Recently, various "in silico" techniques have identified these interactions and helped to develop a comprehensive understanding of nanotoxicity of 2D materials. In this article, we discuss the key recent advances in the application of computational methods for the screening of 2D materials for their nanotoxicity toward two important categories of abundant biomolecules, namely, nucleic acids and proteins. We believe the present article would help to develop newer computational protocols for the identification of novel biocompatible materials, thereby paving the way for next-generation biomedical and therapeutic applications based on 2D materials.
Collapse
Affiliation(s)
- Titas
Kumar Mukhopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road,
Jadavpur, Kolkata 700032, West Bengal, India
| | - Anupam Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road,
Jadavpur, Kolkata 700032, West Bengal, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road,
Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
4
|
Yu Y, Wu K, Yang X, Long J, Chang C. Terahertz Photons Improve Cognitive Functions in Posttraumatic Stress Disorder. RESEARCH (WASHINGTON, D.C.) 2023; 6:0278. [PMID: 38111677 PMCID: PMC10726292 DOI: 10.34133/research.0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/12/2023] [Indexed: 12/20/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a serious psychosis leading to cognitive impairment. To restore cognitive functions for patients, the main treatments are based on medication or rehabilitation training but with limited effectiveness and strong side effects. Here, we demonstrate a new treatment approach for PTSD by using terahertz (THz) photons stimulating the hippocampal CA3 subregion. We verified that this method can nonthermally restore cognitive function in PTSD rats in vivo. After THz photon irradiation, the PTSD rats' recognitive index improved by about 10% in a novel object recognition test, the PTSD rats' accuracy improved by about 100% in a shuttler box test, the PTSD rats' numbers to identify target box was about 5 times lower in a Barnes maze test, and the rate of staying in new arm increased by approximately 40% in a Y-maze test. Further experimental studies found that THz photon (34.5 THz) irradiation could improve the expression of NR2B (increased by nearly 40%) and phosphorylated NR2B (increased by about 50%). In addition, molecular dynamics simulations showed that THz photons at a frequency of 34.5 THz are mainly absorbed by the pocket of glutamate receptors rather than by glutamate molecules. Moreover, the binding between glutamate receptors and glutamate molecules was increased by THz photons. This study offers a nondrug, nonthermal approach to regulate the binding between the excitatory neurotransmitter (glutamate) and NR2B. By increasing synaptic plasticity, it effectively improves the cognitive function of animals with PTSD, providing a promising treatment strategy for NR2B-related cognitive disorders.
Collapse
Affiliation(s)
- Yun Yu
- School of Life Science and Technology,
Xi’an Jiaotong University, Xi’an 710049, China
- Innovation Laboratory of Terahertz Biophysics,
National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Kaijie Wu
- Innovation Laboratory of Terahertz Biophysics,
National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Xiao Yang
- Innovation Laboratory of Terahertz Biophysics,
National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Jiangang Long
- School of Life Science and Technology,
Xi’an Jiaotong University, Xi’an 710049, China
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics,
National Innovation Institute of Defense Technology, Beijing 100071, China
- School of Physics,
Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Shuaib M, Prajapati KS, Singh AK, Kumar S. Discovery of differentially expressed novel miRNAs in breast normal cells and their putative targets. Mol Cell Biochem 2023; 478:2361-2378. [PMID: 36680668 DOI: 10.1007/s11010-023-04665-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
MicroRNAs (miRNAs) play critical role in normal breast development and their altered expression may lead to breast cancer. Identification of new miRNAs allows us to understand the normal physiological process and associated disease pathophysiology. In the present study we identify the novel miRNAs in withaferin A treated breast normal cells (MCF-10A) using small RNA sequencing. The pathophysiological potential of the identified miRNAs was checked by studying their expression pattern in MDA-MB-231 and MCF-7 breast cancer cells using qRT-PCR technique. The secondary/tertiary structure of the identified miRNAs, target gene enrichment in Gene Ontology terms and KEGG pathway, miRNA-mRNA interaction of the sorted target genes, miRNA-mRNA/miRNA-argonaute protein/miRNA-mRNA-argonaute protein interaction and stability, were studied using bioinformatics tools/software, and molecular dynamics simulations. Hsa-miR-N88585 and hsa-miR-N461089 were identified and validated as novel miRNAs in normal breast cells. Up-expression of identified miRNAs in MDA-MB-231 and MCF-7 cells indicates their oncogenic nature. Identified target genes were enriched in classical signaling pathways (AMPK and Ras) and important GO terms. PLXDC2, BHLHE40, ARMC8, and PECAM1, CDC27, KCNK3 genes were sorted as putative targets for hsa-miR-N88585 and hsa-miR-N461089, respectively. MD simulation revealed stable hsa-miR-N88585/hsa-miR-N461089-AGO protein complex formation which indicates their further processing. In conclusion, the study identifies hsa-miR-N88585 and hsa-miR-N461089 as novel miRNAs in breast normal cells which are significantly inversely expressed in breast cancer cells. Further experiments are required to study the role of identified novel miRNAs in normal breast development and pathophysiology of breast cancer.
Collapse
Affiliation(s)
- Mohd Shuaib
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Kumari Sunita Prajapati
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Atul Kumar Singh
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
6
|
Miller LG, Demny M, Tamamis P, Contreras LM. Characterization of epitranscriptome reader proteins experimentally and in silico: Current knowledge and future perspectives beyond the YTH domain. Comput Struct Biotechnol J 2023; 21:3541-3556. [PMID: 37501707 PMCID: PMC10371769 DOI: 10.1016/j.csbj.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
To date, over 150 chemical modifications to the four canonical RNA bases have been discovered, known collectively as the epitranscriptome. Many of these modifications have been implicated in a variety of cellular processes and disease states. Additional work has been done to identify proteins known as "readers" that selectively interact with RNAs that contain specific chemical modifications. Protein interactomes with N6-methyladenosine (m6A), N1-methyladenosine (m1A), N5-methylcytosine (m5C), and 8-oxo-7,8-dihydroguanosine (8-oxoG) have been determined, mainly through experimental advances in proteomics techniques. However, relatively few proteins have been confirmed to bind directly to RNA containing these modifications. Furthermore, for many of these protein readers, the exact binding mechanisms as well as the exclusivity for recognition of modified RNA species remain elusive, leading to questions regarding their roles within different cellular processes. In the case of the YT-521B homology (YTH) family of proteins, both experimental and in silico techniques have been leveraged to provide valuable biophysical insights into the mechanisms of m6A recognition at atomic resolution. To date, the YTH family is one of the best characterized classes of readers. Here, we review current knowledge about epitranscriptome recognition of the YTH domain proteins from previously published experimental and computational studies. We additionally outline knowledge gaps for proteins beyond the well-studied human YTH domains and the current in silico techniques and resources that can enable investigation of protein interactions with modified RNA outside of the YTH-m6A context.
Collapse
Affiliation(s)
- Lucas G. Miller
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Madeline Demny
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Phanourios Tamamis
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, USA
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
7
|
Yu J. On the common pathways of deformation: RNA vs DNA under interrogation. Proc Natl Acad Sci U S A 2023; 120:e2306453120. [PMID: 37224189 PMCID: PMC10266000 DOI: 10.1073/pnas.2306453120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Affiliation(s)
- Jin Yu
- Department of Physics and Astronomy, University of California Irvine, Irvine, CA92697
- Department of Chemistry, University of California Irvine, Irvine, CA92697
| |
Collapse
|
8
|
Hu G, Yan H, Xi G, Gao Z, Wu Z, Lu Z, Tu J. Nanopore sensors for single molecular protein detection: Research progress based on computer simulations. IET Nanobiotechnol 2023; 17:257-268. [PMID: 36924083 DOI: 10.1049/nbt2.12124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
As biological macromolecules, proteins are involved in important cellular functions ranging from DNA replication and biosynthesis to metabolic signalling and environmental sensing. Protein sequencing can help understand the relationship between protein function and structure, and provide key information for disease diagnosis and new drug design. Nanopore sensors are a novel technology to achieve the goal of label-free and high-throughput protein sequencing. In recent years, nanopore-based biosensors have been widely used in the detection and analysis of biomolecules such as DNA, RNA, and proteins. At the same time, computer simulations can describe the transport of proteins through nanopores at the atomic level. This paper reviews the applications of nanopore sensors in protein sequencing over the past decade and the solutions to key problems from a computer simulation perspective, with the aim of pointing the way to the future of nanopore protein sequencing.
Collapse
Affiliation(s)
- Gang Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Han Yan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Guohao Xi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhuwei Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Ziqing Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
9
|
Xiao T, Wu K, Wang P, Ding Y, Yang X, Chang C, Yang Y. Sensory input-dependent gain modulation of the optokinetic nystagmus by mid-infrared stimulation in pigeons. eLife 2023; 12:78729. [PMID: 36853228 PMCID: PMC9977280 DOI: 10.7554/elife.78729] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 02/12/2023] [Indexed: 03/01/2023] Open
Abstract
Neuromodulation serves as a cornerstone for brain sciences and clinical applications. Recent reports suggest that mid-infrared stimulation (MIRS) causes non-thermal modulation of brain functions. Current understanding of its mechanism hampers the routine application of MIRS. Here, we examine how MIRS influences the sensorimotor transformation in awaking-behaving pigeons, from neuronal signals to behavior. We applied MIRS and electrical stimulation (ES) to the pretectal nucleus lentiformis mesencephali (nLM), an essential retinorecipient structure in the pretectum, and examined their influences on the optokinetic nystagmus, a visually guided eye movement. We found MIRS altered eye movements by modulating a specific gain depending on the strength of visual inputs, in a manner different than the effect of ES. Simultaneous extracellular recordings and stimulation showed that MIRS could either excite and inhibit the neuronal activity in the same pretectal neuron depending on its ongoing sensory responsiveness levels in awake-behaving animals. Computational simulations suggest that MIRS modulates the resonance of a carbonyl group of the potassium channel, critical to the action potential generation, altering neuronal responses to sensory inputs and as a consequence, guiding behavior. Our findings suggest that MIRS could be a promising approach toward modulating neuronal functions for brain research and treating neurological diseases.
Collapse
Affiliation(s)
- Tong Xiao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kaijie Wu
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense TechnologyBeijingChina
| | - Peiliang Wang
- University of Chinese Academy of SciencesBeijingChina
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense TechnologyBeijingChina
- Key Laboratory of Electromagnetic Radiation and Sensing Technology, Aerospace Information Research Institute, Chinese Academy of sciencesBeijingChina
| | - Yali Ding
- University of Chinese Academy of SciencesBeijingChina
| | - Xiao Yang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense TechnologyBeijingChina
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense TechnologyBeijingChina
- School of Physics, Peking UniversityBeijingChina
| | - Yan Yang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Institute of Artificial Intelligence, Hefei Comprehensive National Science CenterHefeiChina
| |
Collapse
|
10
|
Bhattacharya S, Satpati P. Insights into the Mechanism of CRISPR/Cas9-Based Genome Editing from Molecular Dynamics Simulations. ACS OMEGA 2023; 8:1817-1837. [PMID: 36687047 PMCID: PMC9850488 DOI: 10.1021/acsomega.2c05583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The CRISPR/Cas9 system is a popular genome-editing tool with immense therapeutic potential. It is a simple two-component system (Cas9 protein and RNA) that recognizes the DNA sequence on the basis of RNA:DNA complementarity, and the Cas9 protein catalyzes the double-stranded break in the DNA. In the past decade, near-atomic resolution structures at various stages of the CRISPR/Cas9 DNA editing pathway have been reported along with numerous experimental and computational studies. Such studies have boosted knowledge of the genome-editing mechanism. Despite such advancements, the application of CRISPR/Cas9 in therapeutics is still limited, primarily due to off-target effects. Several studies aim at engineering high-fidelity Cas9 to minimize the off-target effects. Molecular Dynamics (MD) simulations have been an excellent complement to the experimental studies for investigating the mechanism of CRISPR/Cas9 editing in terms of structure, thermodynamics, and kinetics. MD-based studies have uncovered several important molecular aspects of Cas9, such as nucleotide binding, catalytic mechanism, and off-target effects. In this Review, the contribution of MD simulation to understand the CRISPR/Cas9 mechanism has been discussed, preceded by an overview of the history, mechanism, and structural aspects of the CRISPR/Cas9 system. These studies are important for the rational design of highly specific Cas9 and will also be extremely promising for achieving more accurate genome editing in the future.
Collapse
Affiliation(s)
- Shreya Bhattacharya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Priyadarshi Satpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
11
|
In vitro and in silico investigation of inhibitory activities of 3-arylcoumarins and 3-phenylazo-4-hydroxycoumarin on MAO isoenzymes. Struct Chem 2022. [DOI: 10.1007/s11224-022-02092-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Zhang Y, Yan M, Huang T, Wang X. Understanding the Structural Elasticity of RNA and DNA: All‐Atom Molecular Dynamics. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yingtong Zhang
- Department of Physics Wenzhou University Wenzhou 325035 China
| | - Miao Yan
- Department of Physics Wenzhou University Wenzhou 325035 China
| | - Tingting Huang
- Department of Mechanical Engineering Shanghai Techanical Institute of Electronics and Information Shanghai 201411 China
| | - Xianghong Wang
- Department of Physics Wenzhou University Wenzhou 325035 China
- Department of Mechanical Engineering Shanghai Techanical Institute of Electronics and Information Shanghai 201411 China
| |
Collapse
|
13
|
Gallardo A, Bogart BM, Dutagaci B. Protein-Nucleic Acid Interactions for RNA Polymerase II Elongation Factors by Molecular Dynamics Simulations. J Chem Inf Model 2022; 62:3079-3089. [PMID: 35686985 DOI: 10.1021/acs.jcim.2c00121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
RNA polymerase II (Pol II) forms a complex with elongation factors to proceed to the elongation stage of the transcription process. In this work, we studied the elongation factor SPT5 and explored the protein-nucleic acid interactions for the isolated systems of KOW1 and KOW4 domains of SPT5 with DNA and RNA, respectively. We performed molecular dynamics (MD) simulations using three commonly used force fields that are CHARMM c36m, AMBER ff14sb, and ff19sb. Simulations showed strong protein-nucleic acid interactions and low electrostatic binding free energies for all force fields used. RNA was found to be highly dynamic with all force fields, while DNA had relatively more stable conformations with the AMBER force fields compared to that with CHARMM. Furthermore, we performed MD simulations of the complete elongation complex using CHARMM c36m and AMBER ff19sb force fields to compare the dynamics and interactions with the isolated systems. Similarly, strong KOW1 and DNA interactions were observed in the complete elongation complex simulations and DNA was further stabilized by a network of interactions involving SPT5-KOW1, SPT4, and rpb2 of Pol II. Overall, our study showed that the differences between CHARMM and AMBER force fields strongly affect the dynamics of the nucleic acids. CHARMM provides highly flexible DNA, while AMBER largely stabilizes the DNA structure. Although the presence of the entire interaction network stabilized the DNA and decreased the differences in the results from the two force fields, the discrepancies of the force fields for smaller systems may reflect their problems in generating accurate dynamics of nucleic acids.
Collapse
Affiliation(s)
- Adan Gallardo
- Department of Molecular and Cell Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Brandon M Bogart
- Department of Molecular and Cell Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Bercem Dutagaci
- Department of Molecular and Cell Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| |
Collapse
|
14
|
Tucker MR, Piana S, Tan D, LeVine MV, Shaw DE. Development of Force Field Parameters for the Simulation of Single- and Double-Stranded DNA Molecules and DNA-Protein Complexes. J Phys Chem B 2022; 126:4442-4457. [PMID: 35694853 PMCID: PMC9234960 DOI: 10.1021/acs.jpcb.1c10971] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Although molecular
dynamics (MD) simulations have been used extensively
to study the structural dynamics of proteins, the role of MD simulation
in studies of nucleic acid based systems has been more limited. One
contributing factor to this disparity is the historically lower level
of accuracy of the physical models used in such simulations to describe
interactions involving nucleic acids. By modifying nonbonded and torsion
parameters of a force field from the Amber family of models, we recently
developed force field parameters for RNA that achieve a level of accuracy
comparable to that of state-of-the-art protein force fields. Here
we report force field parameters for DNA, which we developed by transferring
nonbonded parameters from our recently reported RNA force field and
making subsequent adjustments to torsion parameters. We have also
modified the backbone charges in both the RNA and DNA parameter sets
to make the treatment of electrostatics compatible with our recently
developed variant of the Amber protein and ion force field. We name
the force field resulting from the union of these three parameter
sets (the new DNA parameters, the revised RNA parameters, and the
existing protein and ion parameters) DES-Amber. Extensive
testing of DES-Amber indicates that it can describe the thermal stability
and conformational flexibility of single- and double-stranded DNA
systems with a level of accuracy comparable to or, especially for
disordered systems, exceeding that of state-of-the-art nucleic acid
force fields. Finally, we show that, in certain favorable cases, DES-Amber
can be used for long-timescale simulations of protein–nucleic
acid complexes.
Collapse
Affiliation(s)
| | - Stefano Piana
- D. E. Shaw Research, New York, New York 10036, United States
| | - Dazhi Tan
- D. E. Shaw Research, New York, New York 10036, United States
| | | | - David E Shaw
- D. E. Shaw Research, New York, New York 10036, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| |
Collapse
|
15
|
Kale KB, Shinde MASA, Patil RH, Ottoor DP. Exploring the interaction of Valsartan and Valsartan-Zn(ll) complex with DNA by spectroscopic and in silico methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120329. [PMID: 34481251 DOI: 10.1016/j.saa.2021.120329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 05/08/2023]
Abstract
Belonging to the Sartan family, antihypertensive drug - Valsartan (Val) had been found to possess antioxidant properties. Also, the zinc complex of Valsartan (VZn) has been recently recognized as inducing agents of the reductive stress effects thus possessing anticancer activity. Hence, in this work an attempt has been made to understand the interaction of Val and VZn with DNA using spectroscopic and in silico methods as DNA has been identified as the target for many anticancer drugs. VZn has been prepared in 2:1 M ratio and characterised by absorbance, FTIR, HRMS, NMR and Job's continuous variation method. VZn has been tested against human lungs cancer cell line which exhibited good anticancer activity (IC50 = 89 µg/mL). Interaction of Val and VZn with ct-DNA under physiological conditions has been studied by spectroscopic techniques such as fluorescence, absorbance, FTIR, circular dichroism (CD) and in silico methods. Fluorescence quenching, DNA melting and viscometric studies confirmed that both ligand and complex bind to the grooves of the ct-DNA. The experimental results have revealed that VZn strongly bind with DNA compared to Val. Docking study suggested that, Val binds at major groove while VZn binds to both minor and major grooves of B-DNA.
Collapse
Affiliation(s)
- Kishor B Kale
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India; Department of Chemistry, Nowrosjee Wadia College, Pune 411001, India
| | | | - Rajendra H Patil
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Divya P Ottoor
- Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India.
| |
Collapse
|
16
|
Racca JD, Chatterjee D, Chen YS, Rai RK, Yang Y, Georgiadis MM, Haas E, Weiss MA. Tenuous transcriptional threshold of human sex determination. II. SRY exploits water-mediated clamp at the edge of ambiguity. Front Endocrinol (Lausanne) 2022; 13:1029177. [PMID: 36568077 PMCID: PMC9771472 DOI: 10.3389/fendo.2022.1029177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Y-encoded transcription factor SRY initiates male differentiation in therian mammals. This factor contains a high-mobility-group (HMG) box, which mediates sequence-specific DNA binding with sharp DNA bending. A companion article in this issue described sex-reversal mutations at box position 72 (residue 127 in human SRY), invariant as Tyr among mammalian orthologs. Although not contacting DNA, the aromatic ring seals the domain's minor wing at a solvent-exposed junction with a basic tail. A seeming paradox was posed by the native-like biochemical properties of inherited Swyer variant Y72F: its near-native gene-regulatory activity is consistent with the father's male development, but at odds with the daughter's XY female somatic phenotype. Surprisingly, aromatic rings (Y72, F72 or W72) confer higher transcriptional activity than do basic or polar side chains generally observed at solvated DNA interfaces (Arg, Lys, His or Gln). Whereas biophysical studies (time-resolved fluorescence resonance energy transfer and heteronuclear NMR spectroscopy) uncovered only subtle perturbations, dissociation of the Y72F complex was markedly accelerated relative to wild-type. Studies of protein-DNA solvation by molecular-dynamics (MD) simulations of an homologous high-resolution crystal structure (SOX18) suggest that Y72 para-OH anchors a network of water molecules at the tail-DNA interface, perturbed in the variant in association with nonlocal conformational fluctuations. Loss of the Y72 anchor among SRY variants presumably "unclamps" its basic tail, leading to (a) rapid DNA dissociation despite native affinity and (b) attenuated transcriptional activity at the edge of sexual ambiguity. Conservation of Y72 suggests that this water-mediated clamp operates generally among SRY and metazoan SOX domains.
Collapse
Affiliation(s)
- Joseph D. Racca
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Joseph D. Racca, ; Michael A. Weiss,
| | - Deepak Chatterjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ratan K. Rai
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yanwu Yang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Millie M. Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Elisha Haas
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Michael A. Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Joseph D. Racca, ; Michael A. Weiss,
| |
Collapse
|
17
|
Levintov L, Vashisth H. Role of salt-bridging interactions in recognition of viral RNA by arginine-rich peptides. Biophys J 2021; 120:5060-5073. [PMID: 34710377 PMCID: PMC8633718 DOI: 10.1016/j.bpj.2021.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/17/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022] Open
Abstract
Interactions between RNA molecules and proteins are critical to many cellular processes and are implicated in various diseases. The RNA-peptide complexes are good model systems to probe the recognition mechanism of RNA by proteins. In this work, we report studies on the binding-unbinding process of a helical peptide from a viral RNA element using nonequilibrium molecular dynamics simulations. We explored the existence of various dissociation pathways with distinct free-energy profiles that reveal metastable states and distinct barriers to peptide dissociation. We also report the free-energy differences for each of the four pathways to be 96.47 ± 12.63, 96.1 ± 10.95, 91.83 ± 9.81, and 92 ± 11.32 kcal/mol. Based on the free-energy analysis, we further propose the preferred pathway and the mechanism of peptide dissociation. The preferred pathway is characterized by the formation of sequential hydrogen-bonding and salt-bridging interactions between several key arginine amino acids and the viral RNA nucleotides. Specifically, we identified one arginine amino acid (R8) of the peptide to play a significant role in the recognition mechanism of the peptide by the viral RNA molecule.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, New Hampshire.
| |
Collapse
|
18
|
Kadaoluwa Pathirannahalage SP, Meftahi N, Elbourne A, Weiss ACG, McConville CF, Padua A, Winkler DA, Costa Gomes M, Greaves TL, Le TC, Besford QA, Christofferson AJ. Systematic Comparison of the Structural and Dynamic Properties of Commonly Used Water Models for Molecular Dynamics Simulations. J Chem Inf Model 2021; 61:4521-4536. [PMID: 34406000 DOI: 10.1021/acs.jcim.1c00794] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Water is a unique solvent that is ubiquitous in biology and present in a variety of solutions, mixtures, and materials settings. It therefore forms the basis for all molecular dynamics simulations of biological phenomena, as well as for many chemical, industrial, and materials investigations. Over the years, many water models have been developed, and it remains a challenge to find a single water model that accurately reproduces all experimental properties of water simultaneously. Here, we report a comprehensive comparison of structural and dynamic properties of 30 commonly used 3-point, 4-point, 5-point, and polarizable water models simulated using consistent settings and analysis methods. For the properties of density, coordination number, surface tension, dielectric constant, self-diffusion coefficient, and solvation free energy of methane, models published within the past two decades consistently show better agreement with experimental values compared to models published earlier, albeit with some notable exceptions. However, no single model reproduced all experimental values exactly, highlighting the need to carefully choose a water model for a particular study, depending on the phenomena of interest. Finally, machine learning algorithms quantified the relationship between the water model force field parameters and the resulting bulk properties, providing insight into the parameter-property relationship and illustrating the challenges of developing a water model that can accurately reproduce all properties of water simultaneously.
Collapse
Affiliation(s)
- Sachini P Kadaoluwa Pathirannahalage
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, CNRS, Lyon 69342, France
| | - Nastaran Meftahi
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Aaron Elbourne
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Alessia C G Weiss
- Leibniz-Institut für Polymerforschung e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Chris F McConville
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
| | - Agilio Padua
- Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, CNRS, Lyon 69342, France
| | - David A Winkler
- School of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia.,Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,School of Pharmacy, University of Nottingham, Nottingham NG7 2QL, U.K
| | | | - Tamar L Greaves
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Tu C Le
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Quinn A Besford
- Leibniz-Institut für Polymerforschung e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Andrew J Christofferson
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
19
|
Design and Characterization of a Cell-Penetrating Peptide Derived from the SOX2 Transcription Factor. Int J Mol Sci 2021; 22:ijms22179354. [PMID: 34502261 PMCID: PMC8431565 DOI: 10.3390/ijms22179354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/23/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022] Open
Abstract
SOX2 is an oncogenic transcription factor overexpressed in nearly half of the basal-like triple-negative breast cancers associated with very poor outcomes. Targeting and inhibiting SOX2 is clinically relevant as high SOX2 mRNA levels are positively correlated with decreased overall survival and progression-free survival in patients affected with breast cancer. Given its key role as a master regulator of cell proliferation, SOX2 represents an important scaffold for the engineering of dominant-negative synthetic DNA-binding domains (DBDs) that act by blocking or interfering with the oncogenic activity of the endogenous transcription factor in cancer cells. We have synthesized an interference peptide (iPep) encompassing a truncated 24 amino acid long C-terminus of SOX2 containing a potential SOX-specific nuclear localization sequence, and the determinants of the binding of SOX2 to the DNA and to its transcription factor binding partners. We found that the resulting peptide (SOX2-iPep) possessed intrinsic cell penetration and promising nuclear localization into breast cancer cells, and decreased cellular proliferation of SOX2 overexpressing cell lines. The novel SOX2-iPep was found to exhibit a random coil conformation predominantly in solution. Molecular dynamics simulations were used to characterize the interactions of both the SOX2 transcription factor and the SOX2-iPep with FGF4-enhancer DNA in the presence of the POU domain of the partner transcription factor OCT4. Predictions of the free energy of binding revealed that the iPep largely retained the binding affinity for DNA of parental SOX2. This work will enable the future engineering of novel dominant interference peptides to transport different therapeutic cargo molecules such as anti-cancer drugs into cells.
Collapse
|
20
|
Andoh Y, Ichikawa SI, Sakashita T, Yoshii N, Okazaki S. Algorithm to minimize MPI communications in the parallelized fast multipole method combined with molecular dynamics calculations. J Comput Chem 2021; 42:1073-1087. [PMID: 33780021 DOI: 10.1002/jcc.26524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/07/2022]
Abstract
In the era of exascale supercomputers, large-scale, and long-time molecular dynamics (MD) calculations are expected to make breakthroughs in various fields of science and technology. Here, we propose a new algorithm to improve the parallelization performance of message passing interface (MPI)-communication in the MPI-parallelized fast multipole method (FMM) combined with MD calculations under three-dimensional periodic boundary conditions. Our approach enables a drastic reduction in the amount of communication data, including the atomic coordinates and multipole coefficients, both of which are required to calculate the electrostatic interaction by using the FMM. In communications of multipole coefficients, the reduction rate of communication data in the new algorithm relative to the amount of data in the conventional one increases as both the number of FMM levels and the number of MPI processes increase. The aforementioned rate increase could exceed 50% as the number of MPI processes becomes larger for very large systems. The proposed algorithm, named the minimum-transferred data (MTD) method, should enable large-scale and long-time MD calculations to be calculated efficiently, under the condition of massive MPI-parallelization on exascale supercomputers.
Collapse
Affiliation(s)
- Yoshimichi Andoh
- Center for Computational Science, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Shin-Ichi Ichikawa
- Computational Science Division, Technical Computing Business Unit, Fujitsu Limited, Chiba, Japan
| | - Tatsuya Sakashita
- Department of Information and Communication Technology, College of Engineering, Tamagawa University, Machida, Tokyo, Japan
| | - Noriyuki Yoshii
- Center for Computational Science, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- Department of Materials Chemistry, Nagoya University, Nagoya, Japan
| | - Susumu Okazaki
- Department of Materials Chemistry, Nagoya University, Nagoya, Japan
- Department of Advanced Materials Science, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
21
|
Revealing atomic-scale molecular diffusion of a plant-transcription factor WRKY domain protein along DNA. Proc Natl Acad Sci U S A 2021; 118:2102621118. [PMID: 34074787 PMCID: PMC8201915 DOI: 10.1073/pnas.2102621118] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In transcription factors’ search for target genes, one-dimensional diffusion of the protein along DNA is essential. Experimentally, it remains challenging to resolve the individual diffusional steps of protein on DNA. Here, we report mainly all-atom equilibrium simulations of a WRKY domain protein in association with and diffusion along DNA. We demonstrate a complete stepping cycle of the protein for one base pair on DNA within microseconds, along with stochastic motions. Processive protein diffusions on DNA have been further sampled in a coarse-grained model. We have also found preferential DNA-strand association of the domain protein, which becomes most prominent at specific DNA binding, and it can be common for small-domain proteins to balance movements on the DNA with the sequence recognition. Transcription factor (TF) target search on genome is highly essential for gene expression and regulation. High-resolution determination of TF diffusion along DNA remains technically challenging. Here, we constructed a TF model system using the plant WRKY domain protein in complex with DNA from crystallography and demonstrated microsecond diffusion dynamics of WRKY on DNA by employing all-atom molecular-dynamics (MD) simulations. Notably, we found that WRKY preferentially binds to one strand of DNA with significant energetic bias compared with the other, or nonpreferred strand. The preferential DNA-strand binding becomes most prominent in the static process, from nonspecific to specific DNA binding, but less distinct during diffusive movements of the domain protein on the DNA. Remarkably, without employing acceleration forces or bias, we captured a complete one-base-pair stepping cycle of the protein tracking along major groove of DNA with a homogeneous poly-adenosine sequence, as individual hydrogen bonds break and reform at the protein–DNA binding interface. Further DNA-groove tracking motions of the protein forward or backward, with occasional sliding as well as strand crossing to minor groove of DNA, were also captured. The processive diffusion of WRKY along DNA has been further sampled via coarse-grained MD simulations. The study thus provides structural dynamics details on diffusion of a small TF domain protein, suggests how the protein approaches a specific recognition site on DNA, and supports further high-precision experimental detection. The stochastic movements revealed in the TF diffusion also provide general clues about how other protein walkers step and slide along DNA.
Collapse
|
22
|
Mondal M, Yang L, Cai Z, Patra P, Gao YQ. A perspective on the molecular simulation of DNA from structural and functional aspects. Chem Sci 2021; 12:5390-5409. [PMID: 34168783 PMCID: PMC8179617 DOI: 10.1039/d0sc05329e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
As genetic material, DNA not only carries genetic information by sequence, but also affects biological functions ranging from base modification to replication, transcription and gene regulation through its structural and dynamic properties and variations. The motion and structural properties of DNA involved in related biological processes are also multi-scale, ranging from single base flipping to local DNA deformation, TF binding, G-quadruplex and i-motif formation, TAD establishment, compartmentalization and even chromosome territory formation, just to name a few. The sequence-dependent physical properties of DNA play vital role in all these events, and thus it is interesting to examine how simple sequence information affects DNA and the formation of the chromatin structure in these different hierarchical orders. Accordingly, molecular simulations can provide atomistic details of interactions and conformational dynamics involved in different biological processes of DNA, including those inaccessible by current experimental methods. In this perspective, which is mainly based on our recent studies, we provide a brief overview of the atomistic simulations on how the hierarchical structure and dynamics of DNA can be influenced by its sequences, base modifications, environmental factors and protein binding in the context of the protein-DNA interactions, gene regulation and structural organization of chromatin. We try to connect the DNA sequence, the hierarchical structures of DNA and gene regulation.
Collapse
Affiliation(s)
- Manas Mondal
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory 518055 Shenzhen China
| | - Lijiang Yang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University 100871 Beijing China
| | - Zhicheng Cai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University 100871 Beijing China.,Biomedical Pioneering Innovation Center, Peking University 100871 Beijing China
| | - Piya Patra
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory 518055 Shenzhen China .,Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University 100871 Beijing China
| | - Yi Qin Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory 518055 Shenzhen China .,Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University 100871 Beijing China.,Biomedical Pioneering Innovation Center, Peking University 100871 Beijing China.,Beijing Advanced Innovation Center for Genomics, Peking University 100871 Beijing China
| |
Collapse
|
23
|
Španinger E, Potočnik U, Bren U. Molecular Dynamics Simulations Predict That rSNP Located in the HNF‑1α Gene Promotor Region Linked with MODY3 and Hepatocellular Carcinoma Promotes Stronger Binding of the HNF‑4α Transcription Factor. Biomolecules 2020; 10:biom10121700. [PMID: 33371430 PMCID: PMC7767403 DOI: 10.3390/biom10121700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/06/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022] Open
Abstract
Our study aims to investigate the impact of the Maturity-onset diabetes of the young 3 disease-linked rSNP rs35126805 located in the HNF-1α gene promotor on the binding of the transcription factor HNF-4α and consequently on the regulation of HNF-1α gene expression. Our focus is to calculate the change in the binding affinity of the transcription factor HNF-4α to the DNA, caused by the regulatory single nucleotide polymorphism (rSNP) through molecular dynamics simulations and thermodynamic analysis of acquired results. Both root-mean-square difference (RMSD) and the relative binding free energy ΔΔGbind reveal that the HNF-4α binds slightly more strongly to the DNA containing the mutation (rSNP) making the complex more stable/rigid, and thereby influencing the expression of the HNF-1α gene. The resulting disruption of the HNF-4α/HNF-1α pathway is also linked to hepatocellular carcinoma metastasis and enhanced apoptosis in pancreatic cancer cells. To the best of our knowledge, this represents the first study where thermodynamic analysis of the results obtained from molecular dynamics simulations is performed to uncover the influence of rSNP on the protein binding to DNA. Therefore, our approach can be generally applied for studying the impact of regulatory single nucleotide polymorphisms on the binding of transcription factors to the DNA.
Collapse
Affiliation(s)
- Eva Španinger
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (E.Š.); (U.P.)
| | - Uroš Potočnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (E.Š.); (U.P.)
- Faculty of Medicine, University of Maribor, Taborska 8, SI-2000 Maribor, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (E.Š.); (U.P.)
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
- Correspondence: ; Tel.: +386-2-2294-421
| |
Collapse
|
24
|
Bitencourt-Ferreira G, de Azevedo WF. Molecular Dynamics Simulations with NAMD2. Methods Mol Biol 2020; 2053:109-124. [PMID: 31452102 DOI: 10.1007/978-1-4939-9752-7_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
X-ray diffraction crystallography is the primary technique to determine the three-dimensional structures of biomolecules. Although a robust method, X-ray crystallography is not able to access the dynamical behavior of macromolecules. To do so, we have to carry out molecular dynamics simulations taking as an initial system the three-dimensional structure obtained from experimental techniques or generated using homology modeling. In this chapter, we describe in detail a tutorial to carry out molecular dynamics simulations using the program NAMD2. We chose as a molecular system to simulate the structure of human cyclin-dependent kinase 2.
Collapse
Affiliation(s)
- Gabriela Bitencourt-Ferreira
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil
| | - Walter Filgueira de Azevedo
- Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil.
| |
Collapse
|
25
|
Qiu L, Zou X. Scoring Functions for Protein-RNA Complex Structure Prediction: Advances, Applications, and Future Directions. COMMUNICATIONS IN INFORMATION AND SYSTEMS 2020; 20:1-22. [PMID: 33867869 DOI: 10.4310/cis.2020.v20.n1.a1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein-RNA interaction is among the most essential of biological events in living cells, being involved in protein synthesizing, RNA processing and transport, DNA transcription, and regulation of gene expression, and many other critical bio-molecular activities. A thorough understanding of this interaction is of paramount importance in fundamental study of a variety of vital cellular processes and therapeutic application for remedy of a broad range of diseases. Experimental high-resolution 3D structure determination is the primary source of knowledge for protein-RNA complexes. However, due to technical limitations, the existing techniques for experimental structure determination couldn't match the demand from fast growing interest in academia and industry. This problem necessitates the alternative high-throughput computational method for protein-RNA complex structure prediction. Similar to the in silico methods used for protein-protein and protein-DNA interactions, a reliable prediction of protein-RNA complex structure requires a scoring function with commensurate discriminatory power. Derived from determined structures and purposed to predict the to-be-determined structures, the scoring function is not only a predictive tool but also a gauge of our knowledge of protein-RNA interaction. In this review, we present an overview of the status of existing scoring functions and the scientific principle behind their constructions as well as their strengths and limitations. Finally, we will discuss about future directions of the scoring function development for protein-RNA structure prediction.
Collapse
Affiliation(s)
- Liming Qiu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211
| | - Xiaoqin Zou
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211.,Department of Physics & Astronomy, University of Missouri, Columbia, Missouri 65211.,Department of Biochemistry, University of Missouri, Columbia, Missouri 65211.,Informatics Institute, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
26
|
Li Y, Bedi RK, Wiedmer L, Huang D, Śledź P, Caflisch A. Flexible Binding of m 6A Reader Protein YTHDC1 to Its Preferred RNA Motif. J Chem Theory Comput 2019; 15:7004-7014. [PMID: 31670957 DOI: 10.1021/acs.jctc.9b00987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
N6-Methyladenosine (m6A) is the most prevalent chemical modification in human mRNAs. Its recognition by reader proteins enables many cellular functions, including splicing and translation of mRNAs. However, the binding mechanisms of m6A-containing RNAs to their readers are still elusive due to the unclear roles of m6A-flanking ribonucleotides. Here, we use a model system, YTHDC1 with its RNA motif 5'-G-2G-1(m6A)C+1U+2-3', to investigate the binding mechanisms by atomistic simulations, X-ray crystallography, and isothermal titration calorimetry. The experimental data and simulation results show that m6A is captured by an aromatic cage of YTHDC1 and the 3' terminus nucleotides are stabilized by cation-π-π interactions, while the 5' terminus remains flexible. Notably, simulations of unbound RNA motifs reveal that the methyl group of m6A and the 5' terminus shift the conformational preferences of the oligoribonucleotide to the bound-like conformation, thereby facilitating the association process. The binding mechanisms may help in the discovery of chemical probes against m6A reader proteins.
Collapse
Affiliation(s)
- Yaozong Li
- Department of Biochemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| | - Rajiv Kumar Bedi
- Department of Biochemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| | - Lars Wiedmer
- Department of Biochemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| | - Danzhi Huang
- Department of Biochemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| | - Paweł Śledź
- Department of Biochemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland
| |
Collapse
|
27
|
Flood E, Boiteux C, Lev B, Vorobyov I, Allen TW. Atomistic Simulations of Membrane Ion Channel Conduction, Gating, and Modulation. Chem Rev 2019; 119:7737-7832. [DOI: 10.1021/acs.chemrev.8b00630] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Emelie Flood
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Céline Boiteux
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Bogdan Lev
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Igor Vorobyov
- Department of Physiology & Membrane Biology/Department of Pharmacology, University of California, Davis, 95616, United States
| | - Toby W. Allen
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
28
|
Semenyuk P, Muronetz V. Protein Interaction with Charged Macromolecules: From Model Polymers to Unfolded Proteins and Post-Translational Modifications. Int J Mol Sci 2019; 20:E1252. [PMID: 30871103 PMCID: PMC6429204 DOI: 10.3390/ijms20051252] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/18/2022] Open
Abstract
Interaction of proteins with charged macromolecules is involved in many processes in cells. Firstly, there are many naturally occurred charged polymers such as DNA and RNA, polyphosphates, sulfated glycosaminoglycans, etc., as well as pronouncedly charged proteins such as histones or actin. Electrostatic interactions are also important for "generic" proteins, which are not generally considered as polyanions or polycations. Finally, protein behavior can be altered due to post-translational modifications such as phosphorylation, sulfation, and glycation, which change a local charge of the protein region. Herein we review molecular modeling for the investigation of such interactions, from model polyanions and polycations to unfolded proteins. We will show that electrostatic interactions are ubiquitous, and molecular dynamics simulations provide an outstanding opportunity to look inside binding and reveal the contribution of electrostatic interactions. Since a molecular dynamics simulation is only a model, we will comprehensively consider its relationship with the experimental data.
Collapse
Affiliation(s)
- Pavel Semenyuk
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia.
| | - Vladimir Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia.
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia.
| |
Collapse
|
29
|
Ghosh S, Bagchi A. Structural study to analyze the DNA-binding properties of DsrC protein from the dsr operon of sulfur-oxidizing bacterium Allochromatium vinosum. J Mol Model 2019; 25:74. [PMID: 30798412 DOI: 10.1007/s00894-019-3945-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 01/29/2019] [Indexed: 01/11/2023]
Abstract
Our environment is densely populated with various beneficial sulfur-oxidizing prokaryotes (SOPs). These organisms are responsible for the proper maintenance of biogeochemical sulfur cycles to regulate the turnover of biological sulfur substrates in the environment. Allochromatium vinosum strain DSM 180T is a gamma-proteobacterium and is a member of SOP. The organism codes for the sulfur-oxidizing dsr operon, which is comprised of dsrABEFHCMKLJOPNRS genes. The Dsr proteins formed from dsr operon are responsible for formation of sulfur globules. However, the molecular mechanism of the regulation of the dsr operon is not yet fully established. Among the proteins encoded by dsr genes, DsrC is known to have some regulatory functions. DsrC possesses a helix-turn-helix (HTH) DNA-binding motif. Interestingly, the structural details of this interaction have not yet been fully established. Therefore, we tried to analyze the binding interactions of the DsrC protein with the promoter DNA structure of the dsr operon as well as a random DNA as the control. We also performed molecular dynamics simulations of the DsrC-DNA complexes. This structure-function relationship investigation revealed the most probable binding interactions of the DsrC protein with the promoter region present upstream of the dsrA gene in the dsr operon. As expected, the random DNA structure could not properly interact with DsrC. Our analysis will therefore help researchers to predict a plausible biochemical mechanism for the sulfur oxidation process. Graphical Abstract Interaction of Allochromatium vinosum DsrC protein with the promoter region present upstream of the dsrA gene.
Collapse
Affiliation(s)
- Semanti Ghosh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, 741235, India.,Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, 741235, India.
| |
Collapse
|
30
|
Campagne S, Krepl M, Sponer J, Allain FHT. Combining NMR Spectroscopy and Molecular Dynamic Simulations to Solve and Analyze the Structure of Protein-RNA Complexes. Methods Enzymol 2018; 614:393-422. [PMID: 30611432 DOI: 10.1016/bs.mie.2018.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding the RNA binding specificity of protein is of primary interest to decipher their function in the cell. Here, we review the methodology used to solve the structures of protein-RNA complexes using solution-state NMR spectroscopy: from sample preparation to structure calculation procedures. We also describe how molecular dynamics simulations can help providing additional information on the role of key amino acid side chains and of water molecules in protein-RNA recognition.
Collapse
Affiliation(s)
- Sebastien Campagne
- Department of Biology, ETH Zürich, Institute of Molecular Biology and Biophysics, Zürich, Switzerland.
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; Department of Physical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacky University Olomouc, Olomouc, Czech Republic.
| | - Jiri Sponer
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; Department of Physical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacky University Olomouc, Olomouc, Czech Republic.
| | - Frederic H-T Allain
- Department of Biology, ETH Zürich, Institute of Molecular Biology and Biophysics, Zürich, Switzerland.
| |
Collapse
|
31
|
Hu G, Yu X, Bian Y, Cao Z, Xu S, Zhao L, Ji B, Wang W, Wang J. Atomistic Analysis of ToxN and ToxI Complex Unbinding Mechanism. Int J Mol Sci 2018; 19:E3524. [PMID: 30423909 PMCID: PMC6275071 DOI: 10.3390/ijms19113524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/14/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
ToxIN is a triangular structure formed by three protein toxins (ToxNs) and three specific noncoding RNA antitoxins (ToxIs). To respond to stimuli, ToxI is preferentially degraded, releasing the ToxN. Thus, the dynamic character is essential in the normal function interactions between ToxN and ToxI. Here, equilibrated molecular dynamics (MD) simulations were performed to study the stability of ToxN and ToxI. The results indicate that ToxI adjusts the conformation of 3' and 5' termini to bind to ToxN. Steered molecular dynamics (SMD) simulations combined with the recently developed thermodynamic integration in 3nD (TI3nD) method were carried out to investigate ToxN unbinding from the ToxIN complex. The potentials of mean force (PMFs) and atomistic pictures suggest the unbinding mechanism as follows: (1) dissociation of the 5' terminus from ToxN, (2) missing the interactions involved in the 3' terminus of ToxI without three nucleotides (G31, A32, and A33), (3) starting to unfold for ToxI, (4) leaving the binding package of ToxN for three nucleotides of ToxI, (5) unfolding of ToxI. This work provides information on the structure-function relationship at the atomistic level, which is helpful for designing new potent antibacterial drugs in the future.
Collapse
Affiliation(s)
- Guodong Hu
- Shandong Key Laboratory of Biophysics and Institutes of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Xiu Yu
- Shandong Key Laboratory of Biophysics and Institutes of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Yunqiang Bian
- Shandong Key Laboratory of Biophysics and Institutes of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Zanxia Cao
- Shandong Key Laboratory of Biophysics and Institutes of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Shicai Xu
- Shandong Key Laboratory of Biophysics and Institutes of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Liling Zhao
- Shandong Key Laboratory of Biophysics and Institutes of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Baohua Ji
- Shandong Key Laboratory of Biophysics and Institutes of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Wei Wang
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing 210093, China.
| | - Jihua Wang
- Shandong Key Laboratory of Biophysics and Institutes of Biophysics, Dezhou University, Dezhou 253023, China.
| |
Collapse
|
32
|
Ozalp L, Sağ Erdem S, Yüce-Dursun B, Mutlu Ö, Özbil M. Computational insight into the phthalocyanine-DNA binding via docking and molecular dynamics simulations. Comput Biol Chem 2018; 77:87-96. [PMID: 30245350 DOI: 10.1016/j.compbiolchem.2018.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/09/2018] [Accepted: 09/12/2018] [Indexed: 10/28/2022]
Abstract
Phthalocyanines are considered as good DNA binders, which makes them promising anti-tumor drug leads. The purpose of this study is to investigate the interactions between DNA and quaternary metallophthalocyanine derivatives (Q-MPc) possessing varying metals (M = Zn, Ni, Cu, Fe, Mg and Ca) by molecular docking since there seems to be a lack of information in the literature regarding this issue. In this direction, Autodock Vina and Molegro Virtual Docker programs were employed. Autodock Vina results reveal that each Q-MPc derivative binds to DNA strongly with similar binding energies and almost identical binding modes. They bind to the grooves of DNA by constituting favorable interactions between phosphate groups of DNA and Q-MPcs. Although changing the metal has no significant effect on binding, presence of quaternary amine substituents increases the binding constant Kb by about 2-fold comparing to the core Pc (ZnPc). Contrary to Autodock Vina, the calculated Molegro Virtual Docker binding scores have been more diverse indicating that the scoring function of Molegro is better in differentiating these metals. Despite the fact that Molegro is superior to Autodock Vina in terms of metal characterization, Autodock Vina and Molegro exhibit similar binding sites for the studied metallophthalocyanines. We propose that Q-MPc derivatives designed in this study are promising anti-tumor lead compounds since they tightly bind to DNA with considerably high Kb values. Cationic substituents and presence of metal have both positive effects on DNA binding which is critical for designing DNA-active drugs. Additional calculations employing molecular dynamics (MD) simulations verified the stability of Q-MPc-DNA complexes which remained in contact after 20 ns via attractive interactions mainly between DNA backbone and the Pc metal center.
Collapse
Affiliation(s)
- Lalehan Ozalp
- Chemistry Department, Faculty of Arts and Sciences, Marmara University, Goztepe, Istanbul, Turkey.
| | - Safiye Sağ Erdem
- Chemistry Department, Faculty of Arts and Sciences, Marmara University, Goztepe, Istanbul, Turkey.
| | - Başak Yüce-Dursun
- Chemistry Department, Faculty of Arts and Sciences, Marmara University, Goztepe, Istanbul, Turkey.
| | - Özal Mutlu
- Biology Department, Faculty of Arts and Sciences, Marmara University, Goztepe, Istanbul, Turkey.
| | - Mehmet Özbil
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istanbul Arel University, Buyukcekmece, Istanbul, Turkey.
| |
Collapse
|
33
|
Krüger A, Zimbres FM, Kronenberger T, Wrenger C. Molecular Modeling Applied to Nucleic Acid-Based Molecule Development. Biomolecules 2018; 8:E83. [PMID: 30150587 PMCID: PMC6163985 DOI: 10.3390/biom8030083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/12/2018] [Accepted: 08/16/2018] [Indexed: 12/15/2022] Open
Abstract
Molecular modeling by means of docking and molecular dynamics (MD) has become an integral part of early drug discovery projects, enabling the screening and enrichment of large libraries of small molecules. In the past decades, special emphasis was drawn to nucleic acid (NA)-based molecules in the fields of therapy, diagnosis, and drug delivery. Research has increased dramatically with the advent of the SELEX (systematic evolution of ligands by exponential enrichment) technique, which results in single-stranded DNA or RNA sequences that bind with high affinity and specificity to their targets. Herein, we discuss the role and contribution of docking and MD to the development and optimization of new nucleic acid-based molecules. This review focuses on the different approaches currently available for molecular modeling applied to NA interaction with proteins. We discuss topics ranging from structure prediction to docking and MD, highlighting their main advantages and limitations and the influence of flexibility on their calculations.
Collapse
Affiliation(s)
- Arne Krüger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Flávia M Zimbres
- Department of Biochemistry and Molecular Biology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA.
| | - Thales Kronenberger
- Department of Internal Medicine VIII, University Hospital of Tübingen, 72076 Tübingen, Germany.
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
34
|
Local DNA Sequence Controls Asymmetry of DNA Unwrapping from Nucleosome Core Particles. Biophys J 2018; 115:773-781. [PMID: 30072033 DOI: 10.1016/j.bpj.2018.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/18/2018] [Accepted: 07/05/2018] [Indexed: 01/06/2023] Open
Abstract
DNA is tightly wrapped around histone proteins in nucleosome core particles (NCPs) yet must become accessible for processing in the cell. This accessibility, a key component of transcription regulation, is influenced by the properties of both the histone proteins and the DNA itself. Small angle x-ray scattering with contrast variation is used to examine how sequence variations affect DNA unwrapping from NCPs at different salt concentrations. Salt destabilizes NCPs, populating multiple unwrapped states as many possible unwrapping pathways are explored by the complexes. We apply coarse-grained Monte Carlo methods to generate realistic sequence-dependent unwrapped structures for the nucleosomal DNA with thermal variations. An ensemble optimization method is employed to determine the composition of the overall ensemble as electrostatic interactions are weakened. Interesting DNA-sequence-dependent differences are revealed in the unwrapping paths and equilibrium constants. These differences are correlated with specific features within the nucleic acid sequences.
Collapse
|
35
|
Orr AA, Gonzalez-Rivera JC, Wilson M, Bhikha PR, Wang D, Contreras LM, Tamamis P. A high-throughput and rapid computational method for screening of RNA post-transcriptional modifications that can be recognized by target proteins. Methods 2018; 143:34-47. [DOI: 10.1016/j.ymeth.2018.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/14/2018] [Accepted: 01/26/2018] [Indexed: 12/25/2022] Open
|
36
|
Baird-Titus JM, Thapa M, Doerdelmann T, Combs KA, Rance M. Lysine Side-Chain Dynamics in the Binding Site of Homeodomain/DNA Complexes As Observed by NMR Relaxation Experiments and Molecular Dynamics Simulations. Biochemistry 2018; 57:2796-2813. [PMID: 29664630 DOI: 10.1021/acs.biochem.8b00195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An important but poorly characterized contribution to the thermodynamics of protein-DNA interactions is the loss of entropy that occurs from restricting the conformational freedom of amino acid side chains. The effect of restricting the flexibility of several side chains at a protein-DNA interface may be comparable in many cases to the other factors that determine the binding thermodynamics and may, therefore, play a key role in dictating the binding affinity and/or specificity. Because the entropic contributions, including the presence and influence of side-chain dynamics, are especially difficult to estimate based on structural information, it is important to pursue experimental and theoretical studies that can provide direct information regarding these issues. We report on studies of a model system, the homeodomain/DNA complex, focusing on the Lys50 class of homeodomains where a key lysine residue in position 50 was shown previously to be critical for binding site specificity. NMR methodology was employed for determining the dynamics of lysine side-chain amino groups via 15N relaxation measurements in the Lys50-class homeodomains from the Drosophila protein Bicoid and the human protein Pitx2. In the case of Pitx2, complexes with both a consensus and a nonconsensus DNA binding site were examined. NMR-derived order parameters indicated moderate to substantial conformational freedom for the lysine NH3+ group in the complexes studied. To complement the experimental NMR measurements, molecular dynamics simulations were performed for the consensus complexes to gain further, detailed insights regarding the dynamics of the Lys50 side chain and other important residues in the protein-DNA interface.
Collapse
Affiliation(s)
- Jamie M Baird-Titus
- Department of Chemistry and Physical Sciences , Mount St. Joseph University , Cincinnati , Ohio 45233 , United States
| | - Mahendra Thapa
- Department of Physics , University of Cincinnati , Cincinnati , Ohio 45220 , United States
| | - Thomas Doerdelmann
- Department of Molecular Genetics, Biochemistry and Microbiology , University of Cincinnati College of Medicine , Cincinnati , Ohio 45267 , United States
| | - Kelly A Combs
- Department of Molecular Genetics, Biochemistry and Microbiology , University of Cincinnati College of Medicine , Cincinnati , Ohio 45267 , United States
| | - Mark Rance
- Department of Molecular Genetics, Biochemistry and Microbiology , University of Cincinnati College of Medicine , Cincinnati , Ohio 45267 , United States
| |
Collapse
|
37
|
Rajagopalan M, Balasubramanian S, Ramaswamy A. Insights into the RNA binding mechanism of human L1-ORF1p: a molecular dynamics study. MOLECULAR BIOSYSTEMS 2018; 13:1728-1743. [PMID: 28714502 DOI: 10.1039/c7mb00358g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recognition and binding of nucleic acids by ORF1p, an L1 retrotransposon protein, have not yet been clearly understood due to the lack of structural knowledge. The present study attempts to identify the probable single-stranded RNA binding pathway of trimeric ORF1p using computational methods like ligand mapping methodology combined with molecular dynamics simulations. Using the ligand mapping methodology, the possible RNA interacting sites on the surface of the trimeric ORF1p were identified. The crystal structure of the ORF1p timer and an RNA molecule of 29 nucleotide bases in length were used to generate the structure of the ORF1p complex based on information on predicted binding sites as well as the functional states of the CTD. The various complexes of ORF1p-RNA were generated using polyU, polyA and L1RNA sequences and were simulated for a period of 75 ns. The observed stable interaction pattern was used to propose the possible binding pathway. Based on the binding free energy for complex formation, both polyU and L1RNA complexes were identified as stable complexes, while the complex formed with polyA was the least stable one. Furthermore, the importance of the residues in the CC domain (Lys137 and Arg141), the RRM loop (Arg206, Arg210 and Arg211) and the CTD (Arg 261 and Arg262) of all three chains in stabilizing the wrapped RNA has been highlighted in this study. The presence of several electrostatic interactions including H-bond interactions increases the affinity towards RNA and hence plays a vital role in retaining the wrapped position of RNA around ORF1p. Altogether, this study presents one of the possible RNA binding pathways of ORF1p and clearly highlights the functional state of ORF1p visited during RNA binding.
Collapse
Affiliation(s)
- Muthukumaran Rajagopalan
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India.
| | | | | |
Collapse
|
38
|
Kinghorn AB, Fraser LA, Liang S, Shiu SCC, Tanner JA. Aptamer Bioinformatics. Int J Mol Sci 2017; 18:E2516. [PMID: 29186809 PMCID: PMC5751119 DOI: 10.3390/ijms18122516] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023] Open
Abstract
Aptamers are short nucleic acid sequences capable of specific, high-affinity molecular binding. They are isolated via SELEX (Systematic Evolution of Ligands by Exponential Enrichment), an evolutionary process that involves iterative rounds of selection and amplification before sequencing and aptamer characterization. As aptamers are genetic in nature, bioinformatic approaches have been used to improve both aptamers and their selection. This review will discuss the advancements made in several enclaves of aptamer bioinformatics, including simulation of aptamer selection, fragment-based aptamer design, patterning of libraries, identification of lead aptamers from high-throughput sequencing (HTS) data and in silico aptamer optimization.
Collapse
Affiliation(s)
| | | | | | | | - Julian A. Tanner
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China; (A.B.K.); (L.A.F.); (S.L.); (S.C.-C.S.)
| |
Collapse
|
39
|
Huber RG, Marzinek JK, Holdbrook DA, Bond PJ. Multiscale molecular dynamics simulation approaches to the structure and dynamics of viruses. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 128:121-132. [DOI: 10.1016/j.pbiomolbio.2016.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/06/2016] [Accepted: 09/27/2016] [Indexed: 12/15/2022]
|
40
|
Sun T, Mirzoev A, Korolev N, Lyubartsev AP, Nordenskiöld L. All-Atom MD Simulation of DNA Condensation Using Ab Initio Derived Force Field Parameters of Cobalt(III)-Hexammine. J Phys Chem B 2017; 121:7761-7770. [DOI: 10.1021/acs.jpcb.7b03793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Tiedong Sun
- School
of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Alexander Mirzoev
- School
of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Nikolay Korolev
- School
of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Alexander P. Lyubartsev
- Department
of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Lars Nordenskiöld
- School
of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
41
|
Barroso da Silva FL, Derreumaux P, Pasquali S. Protein-RNA complexation driven by the charge regulation mechanism. Biochem Biophys Res Commun 2017; 498:264-273. [PMID: 28709871 DOI: 10.1016/j.bbrc.2017.07.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 06/27/2017] [Accepted: 07/05/2017] [Indexed: 11/27/2022]
Abstract
Electrostatic interactions play a pivotal role in many (bio)molecular association processes. The molecular organization and function in biological systems are largely determined by these interactions from pure Coulombic contributions to more peculiar mesoscopic forces due to ion-ion correlation and proton fluctuations. The latter is a general electrostatic mechanism that gives attraction particularly at low electrolyte concentrations. This charge regulation mechanism due to titrating amino acid and nucleotides residues is discussed here in a purely electrostatic framework. By means of constant-pH Monte Carlo simulations based on a fast coarse-grained titration proton scheme, a new computer molecular model was devised to study protein-RNA interactions. The complexation between the RNA silencing suppressor p19 viral protein and the 19-bp small interfering RNA was investigated at different solution pH and salt conditions. The outcomes illustrate the importance of the charge regulation mechanism that enhances the association between these macromolecules in a similar way as observed for other protein-polyelectrolyte systems typically found in colloidal science. Due to the highly negative charge of RNA, the effect is more pronounced in this system as predicted by the Kirkwood-Shumaker theory. Our results contribute to the general physico-chemical understanding of macromolecular complexation and shed light on the extensive role of RNA in the cell's life.
Collapse
Affiliation(s)
- Fernando Luís Barroso da Silva
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do café, s/no. - Universidade de São Paulo, BR-14040-903 Ribeirão Preto, SP, Brazil; Laboratoire de Biochimie Theórique, UPR 9080 CNRS, Institut de Biologie Physico Chimique, Université Paris Diderot - Paris 7 et Université Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Philippe Derreumaux
- Laboratoire de Biochimie Theórique, UPR 9080 CNRS, Institut de Biologie Physico Chimique, Université Paris Diderot - Paris 7 et Université Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Samuela Pasquali
- Laboratoire de Cristallographie et RMN Biologiques, UMR 8015 CNRS, Faculté des sciences pharmaceutiques et biologiques, Universtié Paris Descartes et Université Sorbonne Paris Cité, 4 Avenue de l'Observatoire, 75006 Paris, France
| |
Collapse
|
42
|
P. S, D. TK, C. GPD, R. S, Zayed H. Determining the role of missense mutations in the POU domain of HNF1A that reduce the DNA-binding affinity: A computational approach. PLoS One 2017; 12:e0174953. [PMID: 28410371 PMCID: PMC5391926 DOI: 10.1371/journal.pone.0174953] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/18/2017] [Indexed: 12/21/2022] Open
Abstract
Maturity-onset diabetes of the young type 3 (MODY3) is a non-ketotic form of diabetes associated with poor insulin secretion. Over the past years, several studies have reported the association of missense mutations in the Hepatocyte Nuclear Factor 1 Alpha (HNF1A) with MODY3. Missense mutations in the POU homeodomain (POUH) of HNF1A hinder binding to the DNA, thereby leading to a dysfunctional protein. Missense mutations of the HNF1A were retrieved from public databases and subjected to a three-step computational mutational analysis to identify the underlying mechanism. First, the pathogenicity and stability of the mutations were analyzed to determine whether they alter protein structure and function. Second, the sequence conservation and DNA-binding sites of the mutant positions were assessed; as HNF1A protein is a transcription factor. Finally, the biochemical properties of the biological system were validated using molecular dynamic simulations in Gromacs 4.6.3 package. Two arginine residues (131 and 203) in the HNF1A protein are highly conserved residues and contribute to the function of the protein. Furthermore, the R131W, R131Q, and R203C mutations were predicted to be highly deleterious by in silico tools and showed lower binding affinity with DNA when compared to the native protein using the molecular docking analysis. Triplicate runs of molecular dynamic (MD) simulations (50ns) revealed smaller changes in patterns of deviation, fluctuation, and compactness, in complexes containing the R131Q and R131W mutations, compared to complexes containing the R203C mutant complex. We observed reduction in the number of intermolecular hydrogen bonds, compactness, and electrostatic potential, as well as the loss of salt bridges, in the R203C mutant complex. Substitution of arginine with cysteine at position 203 decreases the affinity of the protein for DNA, thereby destabilizing the protein. Based on our current findings, the MD approach is an important tool for elucidating the impact and affinity of mutations in DNA-protein interactions and understanding their function.
Collapse
Affiliation(s)
- Sneha P.
- School of BioSciences and Technology,Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Thirumal Kumar D.
- School of BioSciences and Technology,Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - George Priya Doss C.
- School of BioSciences and Technology,Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Siva R.
- School of BioSciences and Technology,Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
43
|
Zhang C, Bell D, Harger M, Ren P. Polarizable Multipole-Based Force Field for Aromatic Molecules and Nucleobases. J Chem Theory Comput 2017; 13:666-678. [PMID: 28030769 PMCID: PMC5312700 DOI: 10.1021/acs.jctc.6b00918] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Aromatic molecules with π electrons
are commonly involved
in chemical and biological recognitions. For example, nucleobases
play central roles in DNA/RNA structure and their interactions with
proteins. The delocalization of the π electrons is responsible
for the high polarizability of aromatic molecules. In this work, the
AMOEBA force field has been developed and applied to 5 regular nucleobases
and 12 aromatic molecules. The permanent electrostatic energy is expressed
as atomic multipole interactions between atom pairs, and many-body
polarization is accounted for by mutually induced atomic dipoles.
We have systematically investigated aromatic ring stacking and aromatic-water
interactions for nucleobases and aromatic molecules, as well as base–base
hydrogen-bonding pair interactions, all at various distances and orientations.
van der Waals parameters were determined by comparison to the quantum
mechanical interaction energy of these dimers and fine-tuned using
condensed phase simulation. By comparing to quantum mechanical calculations,
we show that the resulting classical potential is able to accurately
describe molecular polarizability, molecular vibrational frequency,
and dimer interaction energy of these aromatic systems. Condensed
phase properties, including hydration free energy, liquid density,
and heat of vaporization, are also in good overall agreement with
experimental values. The structures of benzene liquid phase and benzene-water
solution were also investigated by simulation and compared with experimental
and PDB structure derived statistical results.
Collapse
Affiliation(s)
- Changsheng Zhang
- Department of Biomedical Engineering, The University of Texas at Austin , Austin, Texas 78712, United States
| | - David Bell
- Department of Biomedical Engineering, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Matthew Harger
- Department of Biomedical Engineering, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
44
|
Hilder TA, Hodgkiss JM. Molecular Mechanism of Binding between 17β-Estradiol and DNA. Comput Struct Biotechnol J 2016; 15:91-97. [PMID: 28066533 PMCID: PMC5196241 DOI: 10.1016/j.csbj.2016.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 02/05/2023] Open
Abstract
Although 17β-estradiol (E2) is a natural molecule involved in the endocrine system, its widespread use in various applications has resulted in its accumulation in the environment and its classification as an endocrine-disrupting molecule. These molecules can interfere with the hormonal system, and have been linked to various adverse effects such as the proliferation of breast cancer. It has been proposed that E2 could contribute to breast cancer by the induction of DNA damage. Mass spectrometry has demonstrated that E2 can bind to DNA but the mechanism by which E2 interacts with DNA has yet to be elucidated. Using all-atom molecular dynamics simulations, we demonstrate that E2 intercalates (inserts between two successive DNA base pairs) in DNA at the location specific to estrogen receptor binding, known as the estrogen response element (ERE), and to other random sequences of DNA. Our results suggest that excess E2 has the potential to disrupt processes in the body which rely on binding to DNA, such as the binding of the estrogen receptor to the ERE and the activity of enzymes that bind DNA, and could lead to DNA damage.
Collapse
Affiliation(s)
- Tamsyn A. Hilder
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6040, New Zealand
- Computational Biophysics Group, Research School of Biology, Canberra, ACT 0200, Australia
- Correspondence to: T.A. Hilder, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6040, New Zealand.Computational Biophysics GroupResearch School of BiologyCanberraACT0200Australia
| | - Justin M. Hodgkiss
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6040, New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, New Zealand
- Correspondence to: J.M. Hodgkiss, The MacDiarmid Institute of Advanced Materials and Nanotechnology, New Zealand.The MacDiarmid Institute of Advanced Materials and NanotechnologyNew Zealand
| |
Collapse
|
45
|
Pasi M, Angelov D, Bednar J, Dimitrov S, Lavery R. Extra views on structure and dynamics of DNA loops on nucleosomes studied with molecular simulations. Nucleus 2016; 7:554-559. [PMID: 27874316 PMCID: PMC5214536 DOI: 10.1080/19491034.2016.1260800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/10/2016] [Indexed: 02/07/2023] Open
Abstract
It has been shown experimentally that the action of the RSC chromatin remodeler leads to the formation of an irregular, partially remodeled nucleosome, termed a remosome. The remosome contains an extra 30-40 base pairs of DNA compared to a canonical nucleosome. Large-scale molecular simulations have provided information on the probable structure of remosomes and have explained why they remain stable in the absence of RSC. Here we explain how these simulations were carried out and what the resulting remosome models imply in terms of the mechanism of action of RSC. We notably show that local kinks within DNA are key in explaining how extra DNA can be in added to nucleosomes without unduly disturbing DNA-histone binding.
Collapse
Affiliation(s)
- Marco Pasi
- Université de Lyon/CNRS UMR 5086, MMSB, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Dimitar Angelov
- Université de Lyon/CNRS/INRA UMR 5239, LBMC, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jan Bednar
- Institut Albert Bonniot, Université de Grenoble Alpes/INSERM U1209/CNRS UMR 5309, Grenoble, France
| | - Stefan Dimitrov
- Institut Albert Bonniot, Université de Grenoble Alpes/INSERM U1209/CNRS UMR 5309, Grenoble, France
| | - Richard Lavery
- Université de Lyon/CNRS UMR 5086, MMSB, Institut de Biologie et Chimie des Protéines, Lyon, France
| |
Collapse
|
46
|
Lee EY, Lee CK, Schmidt NW, Jin F, Lande R, Curk T, Frenkel D, Dobnikar J, Gilliet M, Wong GC. A review of immune amplification via ligand clustering by self-assembled liquid-crystalline DNA complexes. Adv Colloid Interface Sci 2016; 232:17-24. [PMID: 26956527 DOI: 10.1016/j.cis.2016.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 12/20/2022]
Abstract
We examine how the interferon production of plasmacytoid dendritic cells is amplified by the self-assembly of liquid-crystalline antimicrobial peptide/DNA complexes. These specialized dendritic cells are important for host defense because they quickly release large quantities of type I interferons in response to infection. However, their aberrant activation is also correlated with autoimmune diseases such as psoriasis and lupus. In this review, we will describe how polyelectrolyte self-assembly and the statistical mechanics of multivalent interactions contribute to this process. In a more general compass, we provide an interesting conceptual corrective to the common notion in molecular biology of a dichotomy between specific interactions and non-specific interactions, and show examples where one can construct exquisitely specific interactions using non-specific interactions.
Collapse
|
47
|
Chakraborty K, Khatua P, Bandyopadhyay S. Exploring ion induced folding of a single-stranded DNA oligomer from molecular simulation studies. Phys Chem Chem Phys 2016; 18:15899-910. [PMID: 27241311 DOI: 10.1039/c6cp00663a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One crucial issue in DNA hydration is the effect of salts on its conformational features. This has relevance in biology as cations present in the cellular environment shield the negative charges on the DNA backbone, thereby reducing the repulsive force between them. By screening the negative charges along the backbone, cations stabilize the folded structure of DNA. To study the effect of the added salt on single-stranded DNA (ss-DNA) conformations, we have performed room temperature molecular dynamics simulations of an aqueous solution containing the ss-DNA dodecamer with the 5'-CGCGAATTCGCG-3' sequence in the presence of 0.2, 0.5, and 0.8 M NaCl. Our calculations reveal that in the presence of the salt, the DNA molecule forms more collapsed coil-like conformations due to the screening of negative charges along the backbone. Additionally, we demonstrated that the formation of an octahedral inner-sphere complex by the strongly bound ion plays an important role in the stabilization of such folded conformation of DNA. Importantly, it is found that ion-DNA interactions can also explain the formation of non-sequential base stackings with longer lifetimes. Such non-sequential base stackings further stabilize the collapsed coil-like folded form of the DNA oligomer.
Collapse
Affiliation(s)
- Kaushik Chakraborty
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur - 721302, India.
| | | | | |
Collapse
|
48
|
Shaneh A, Purisima EO, Salavati R, Sulea T. Structural Studies of Trypanosoma brucei RNA Editing Ligases and Their Binding Partner Proteins. Biochemistry 2016; 55:2319-31. [PMID: 27031688 DOI: 10.1021/acs.biochem.5b01257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To study the mechanism of ligating nicked RNA strands, we conducted molecular dynamics simulations of Trypanosoma brucei RNA editing ligases L1 and L2 complexed with double-stranded RNA (dsRNA) fragments. In each resulting model, a Mg(2+) ion coordinates the 5'-PO4 of the nicked nucleotide and the 3'-OH of the terminal nucleotide for a nucleophilic reaction consistent with the postulated step 3 chemistry of the ligation mechanism. Moreover, coordination of the 3'-OH to the Mg(2+) ion may lower its pKa, thereby rendering it a more effective nucleophile as an oxyanion. Thus, Mg(2+) may play a twofold role: bringing the reactants into the proximity of each other and activating the nucleophile. We also conducted solvated interaction energy calculations to explore whether ligation specificities can be correlated to ligase-dsRNA binding affinity changes. The calculated dsRNA binding affinities are stronger for both L1 and L2 when the terminal nucleotide is changed from cytosine to guanine, in line with their experimentally measured ligation specificities. Because the ligation mechanism is also influenced by interactions of the ligase with partner proteins from the editosome subcomplex, we also modeled the structure of the RNA-bound L2 in complex with the oligonucleotide binding (OB) domain of largest editosome interacting protein A1. The resulting L2-dsRNA-A1 model, which is consistent with mutagenesis and binding data recorded to date, provides the first atomic-level glimpse of plausible interactions around the RNA ligation site in the presence of an OB domain presented in-trans to a nucleic acid ligase.
Collapse
Affiliation(s)
- Alireza Shaneh
- Institute of Parasitology, McGill University , 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, H9X 3V9 Quebec, Canada.,McGill Centre for Bioinformatics, McGill University , Bellini Building, 3649 Promenade Sir William Osler, Montreal, H3G 0B1 Quebec, Canada
| | - Enrico O Purisima
- Human Health Therapeutics, National Research Council Canada , 6100 Royalmount Avenue, Montreal, H4P 2R2 Quebec, Canada.,Department of Biochemistry, McGill University , McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, H3G 1Y6 Quebec, Canada.,McGill Centre for Bioinformatics, McGill University , Bellini Building, 3649 Promenade Sir William Osler, Montreal, H3G 0B1 Quebec, Canada
| | - Reza Salavati
- Institute of Parasitology, McGill University , 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, H9X 3V9 Quebec, Canada.,Department of Biochemistry, McGill University , McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, H3G 1Y6 Quebec, Canada.,McGill Centre for Bioinformatics, McGill University , Bellini Building, 3649 Promenade Sir William Osler, Montreal, H3G 0B1 Quebec, Canada
| | - Traian Sulea
- Institute of Parasitology, McGill University , 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, H9X 3V9 Quebec, Canada.,Human Health Therapeutics, National Research Council Canada , 6100 Royalmount Avenue, Montreal, H4P 2R2 Quebec, Canada
| |
Collapse
|
49
|
Effects of conformational ordering on protein/polyelectrolyte electrostatic complexation: ionic binding and chain stiffening. Sci Rep 2016; 6:23739. [PMID: 27030165 PMCID: PMC4814872 DOI: 10.1038/srep23739] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/14/2016] [Indexed: 11/23/2022] Open
Abstract
Coupling of electrostatic complexation with conformational transition is rather general in protein/polyelectrolyte interaction and has important implications in many biological processes and practical applications. This work studied the electrostatic complexation between κ-carrageenan (κ-car) and type B gelatin, and analyzed the effects of the conformational ordering of κ-car induced upon cooling in the presence of potassium chloride (KCl) or tetramethylammonium iodide (Me4NI). Experimental results showed that the effects of conformational ordering on protein/polyelectrolyte electrostatic complexation can be decomposed into ionic binding and chain stiffening. At the initial stage of conformational ordering, electrostatic complexation can be either suppressed or enhanced due to the ionic bindings of K+ and I− ions, which significantly alter the charge density of κ-car or occupy the binding sites of gelatin. Beyond a certain stage of conformational ordering, i.e., helix content θ > 0.30, the effect of chain stiffening, accompanied with a rapid increase in helix length ζ, becomes dominant and tends to dissociate the electrostatic complexation. The effect of chain stiffening can be theoretically interpreted in terms of double helix association.
Collapse
|
50
|
Mhashal AR, Choudhury CK, Roy S. Probing the ATP-induced conformational flexibility of the PcrA helicase protein using molecular dynamics simulation. J Mol Model 2016; 22:54. [PMID: 26860503 DOI: 10.1007/s00894-016-2922-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 01/24/2016] [Indexed: 11/26/2022]
Abstract
Helicases are enzymes that unwind double-stranded DNA (dsDNA) into its single-stranded components. It is important to understand the binding and unbinding of ATP from the active sites of helicases, as this knowledge can be used to elucidate the functionality of helicases during the unwinding of dsDNA. In this work, we investigated the unbinding of ATP and its effect on the active-site residues of the helicase PcrA using molecular dynamic simulations. To mimic the unbinding process of ATP from the active site of the helicase, we simulated the application of an external force that pulls ATP from the active site and computed the free-energy change during this process. We estimated an energy cost of ~85 kJ/mol for the transformation of the helicase from the ATP-bound state (1QHH) to the ATP-free state (1PJR). Unbinding led to conformational changes in the residues of the protein at the active site. Some of the residues at the ATP-binding site were significantly reoriented when the ATP was pulled. We observed a clear competition between reorientation of the residues and energy stabilization by hydrogen bonds between the ATP and active-site residues. We also checked the flexibility of the PcrA protein using a principal component analysis of domain motion. We found that the ATP-free state of the helicase is more flexible than the ATP-bound state.
Collapse
Affiliation(s)
- Anil R Mhashal
- Physical Chemistry Division, National Chemical Laboratory, Pune, 411008, India
| | | | - Sudip Roy
- Physical Chemistry Division, National Chemical Laboratory, Pune, 411008, India.
| |
Collapse
|