1
|
Trifan A, Gorgun D, Salim M, Li Z, Brace A, Zvyagin M, Ma H, Clyde A, Clark D, Hardy DJ, Burnley T, Huang L, McCalpin J, Emani M, Yoo H, Yin J, Tsaris A, Subbiah V, Raza T, Liu J, Trebesch N, Wells G, Mysore V, Gibbs T, Phillips J, Chennubhotla SC, Foster I, Stevens R, Anandkumar A, Vishwanath V, Stone JE, Tajkhorshid E, A. Harris S, Ramanathan A. Intelligent resolution: Integrating Cryo-EM with AI-driven multi-resolution simulations to observe the severe acute respiratory syndrome coronavirus-2 replication-transcription machinery in action. THE INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS 2022; 36:603-623. [PMID: 38464362 PMCID: PMC10923581 DOI: 10.1177/10943420221113513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replication transcription complex (RTC) is a multi-domain protein responsible for replicating and transcribing the viral mRNA inside a human cell. Attacking RTC function with pharmaceutical compounds is a pathway to treating COVID-19. Conventional tools, e.g., cryo-electron microscopy and all-atom molecular dynamics (AAMD), do not provide sufficiently high resolution or timescale to capture important dynamics of this molecular machine. Consequently, we develop an innovative workflow that bridges the gap between these resolutions, using mesoscale fluctuating finite element analysis (FFEA) continuum simulations and a hierarchy of AI-methods that continually learn and infer features for maintaining consistency between AAMD and FFEA simulations. We leverage a multi-site distributed workflow manager to orchestrate AI, FFEA, and AAMD jobs, providing optimal resource utilization across HPC centers. Our study provides unprecedented access to study the SARS-CoV-2 RTC machinery, while providing general capability for AI-enabled multi-resolution simulations at scale.
Collapse
Affiliation(s)
- Anda Trifan
- Argonne National Laboratory
- University of Illinois Urbana-Champaign
| | - Defne Gorgun
- Argonne National Laboratory
- University of Illinois Urbana-Champaign
| | | | | | | | | | | | - Austin Clyde
- Argonne National Laboratory
- University of Chicago
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ian Foster
- Argonne National Laboratory
- University of Chicago
| | - Rick Stevens
- Argonne National Laboratory
- University of Chicago
| | | | | | | | | | | | | |
Collapse
|
2
|
Gong X, Zhang Y, Chen J. Advanced Sampling Methods for Multiscale Simulation of Disordered Proteins and Dynamic Interactions. Biomolecules 2021; 11:1416. [PMID: 34680048 PMCID: PMC8533332 DOI: 10.3390/biom11101416] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are highly prevalent and play important roles in biology and human diseases. It is now also recognized that many IDPs remain dynamic even in specific complexes and functional assemblies. Computer simulations are essential for deriving a molecular description of the disordered protein ensembles and dynamic interactions for a mechanistic understanding of IDPs in biology, diseases, and therapeutics. Here, we provide an in-depth review of recent advances in the multi-scale simulation of disordered protein states, with a particular emphasis on the development and application of advanced sampling techniques for studying IDPs. These techniques are critical for adequate sampling of the manifold functionally relevant conformational spaces of IDPs. Together with dramatically improved protein force fields, these advanced simulation approaches have achieved substantial success and demonstrated significant promise towards the quantitative and predictive modeling of IDPs and their dynamic interactions. We will also discuss important challenges remaining in the atomistic simulation of larger systems and how various coarse-grained approaches may help to bridge the remaining gaps in the accessible time- and length-scales of IDP simulations.
Collapse
Affiliation(s)
- Xiping Gong
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA; (X.G.); (Y.Z.)
| | - Yumeng Zhang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA; (X.G.); (Y.Z.)
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA; (X.G.); (Y.Z.)
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Prakash DB, Vamsi DKK, Rajesh DB, Sanjeevi CB. Control Intervention Strategies for Within-Host, Between-Host and their Efficacy in the Treatment, Spread of COVID-19 : A Multi Scale Modeling Approach. COMPUTATIONAL AND MATHEMATICAL BIOPHYSICS 2020. [DOI: 10.1515/cmb-2020-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The COVID-19 pandemic has resulted in more than 65.5 million infections and 15,14,695 deaths in 212 countries over the last few months. Different drug intervention acting at multiple stages of pathogenesis of COVID-19 can substantially reduce the infection induced, thereby decreasing the mortality. Also population level control strategies can reduce the spread of the COVID-19 substantially. Motivated by these observations, in this work we propose and study a multi scale model linking both within-host and between-host dynamics of COVID-19. Initially the natural history dealing with the disease dynamics is studied. Later comparative effectiveness is performed to understand the efficacy of both the within-host and population level interventions. Findings of this study suggest that a combined strategy involving treatment with drugs such as Arbidol, remdesivir, Lopinavir/Ritonavir that inhibits viral replication and immunotherapies like monoclonal antibodies, along with environmental hygiene and generalized social distancing proved to be the best and optimal in reducing the basic reproduction number and environmental spread of the virus at the population level.
Collapse
Affiliation(s)
- D. Bhanu Prakash
- Department of Mathematics and Computer Science , Sri Sathya Sai Institute of Higher Learning - SSSIHL , India
| | - D. K. K. Vamsi
- Department of Mathematics and Computer Science , Sri Sathya Sai Institute of Higher Learning - SSSIHL , India
| | - D. Bangaru Rajesh
- Department of Mathematics and Computer Science , Sri Sathya Sai Institute of Higher Learning - SSSIHL , India
| | - Carani B Sanjeevi
- Vice-Chancellor, Sri Sathya Sai Institute of Higher Learning - SSSIHL, India and Department of Medicine, Karolinska Institute , Stockholm , Sweden ,
| |
Collapse
|
4
|
Tarenzi T, Calandrini V, Potestio R, Carloni P. Open-Boundary Molecular Mechanics/Coarse-Grained Framework for Simulations of Low-Resolution G-Protein-Coupled Receptor-Ligand Complexes. J Chem Theory Comput 2019; 15:2101-2109. [PMID: 30763087 PMCID: PMC6433333 DOI: 10.1021/acs.jctc.9b00040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Indexed: 12/18/2022]
Abstract
G-protein-coupled receptors (GPCRs) constitute as much as 30% of the overall proteins targeted by FDA-approved drugs. However, paucity of structural experimental information and low sequence identity between members of the family impair the reliability of traditional docking approaches and atomistic molecular dynamics simulations for in silico pharmacological applications. We present here a dual-resolution approach tailored for such low-resolution models. It couples a hybrid molecular mechanics/coarse-grained (MM/CG) scheme, previously developed by us for GPCR-ligand complexes, with a Hamiltonian-based adaptive resolution scheme (H-AdResS) for the solvent. This dual-resolution approach removes potentially inaccurate atomistic details from the model while building a rigorous statistical ensemble-the grand canonical one-in the high-resolution region. We validate the method on a well-studied GPCR-ligand complex, for which the 3D structure is known, against atomistic simulations. This implementation paves the way for future accurate in silico studies of low-resolution ligand/GPCRs models.
Collapse
Affiliation(s)
- Thomas Tarenzi
- Computation-based Science and Technology Research Center CaSToRC , The Cyprus Institute , 20 Konstaninou Kavafi Street , 2121 Aglantzia, Nicosia , Cyprus
- Departments of Physics , Faculty of Mathematics, Computer Science and Natural Sciences, Aachen University , Otto-Blumenthal Straße , 52062 Aachen , Germany
- Computational Biomedicine, Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9 , Forschungszentrum Jülich , 52428 Jülich , Germany
| | - Vania Calandrini
- Computational Biomedicine, Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9 , Forschungszentrum Jülich , 52428 Jülich , Germany
| | - Raffaello Potestio
- Department of Physics , University of Trento , via Sommarive 14 Povo , Trento 38123 , Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications , I-38123 Trento , Italy
| | - Paolo Carloni
- Departments of Physics , Faculty of Mathematics, Computer Science and Natural Sciences, Aachen University , Otto-Blumenthal Straße , 52062 Aachen , Germany
- Computational Biomedicine, Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9 , Forschungszentrum Jülich , 52428 Jülich , Germany
- JARA-HPC, Jülich Supercomputing Center , Forschungszentrum Jülich , 52428 Jülich , Germany
| |
Collapse
|
5
|
Jin L, Shi YZ, Feng CJ, Tan YL, Tan ZJ. Modeling Structure, Stability, and Flexibility of Double-Stranded RNAs in Salt Solutions. Biophys J 2018; 115:1403-1416. [PMID: 30236782 DOI: 10.1016/j.bpj.2018.08.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/10/2018] [Accepted: 08/24/2018] [Indexed: 11/16/2022] Open
Abstract
Double-stranded (ds) RNAs play essential roles in many processes of cell metabolism. The knowledge of three-dimensional (3D) structure, stability, and flexibility of dsRNAs in salt solutions is important for understanding their biological functions. In this work, we further developed our previously proposed coarse-grained model to predict 3D structure, stability, and flexibility for dsRNAs in monovalent and divalent ion solutions through involving an implicit structure-based electrostatic potential. The model can make reliable predictions for 3D structures of extensive dsRNAs with/without bulge/internal loops from their sequences, and the involvement of the structure-based electrostatic potential and corresponding ion condition can improve the predictions for 3D structures of dsRNAs in ion solutions. Furthermore, the model can make good predictions for thermal stability for extensive dsRNAs over the wide range of monovalent/divalent ion concentrations, and our analyses show that the thermally unfolding pathway of dsRNA is generally dependent on its length as well as its sequence. In addition, the model was employed to examine the salt-dependent flexibility of a dsRNA helix, and the calculated salt-dependent persistence lengths are in good accordance with experiments.
Collapse
Affiliation(s)
- Lei Jin
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan, China
| | - Chen-Jie Feng
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Lan Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nanostructures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Shi YZ, Jin L, Feng CJ, Tan YL, Tan ZJ. Predicting 3D structure and stability of RNA pseudoknots in monovalent and divalent ion solutions. PLoS Comput Biol 2018; 14:e1006222. [PMID: 29879103 PMCID: PMC6007934 DOI: 10.1371/journal.pcbi.1006222] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 06/19/2018] [Accepted: 05/22/2018] [Indexed: 01/30/2023] Open
Abstract
RNA pseudoknots are a kind of minimal RNA tertiary structural motifs, and their three-dimensional (3D) structures and stability play essential roles in a variety of biological functions. Therefore, to predict 3D structures and stability of RNA pseudoknots is essential for understanding their functions. In the work, we employed our previously developed coarse-grained model with implicit salt to make extensive predictions and comprehensive analyses on the 3D structures and stability for RNA pseudoknots in monovalent/divalent ion solutions. The comparisons with available experimental data show that our model can successfully predict the 3D structures of RNA pseudoknots from their sequences, and can also make reliable predictions for the stability of RNA pseudoknots with different lengths and sequences over a wide range of monovalent/divalent ion concentrations. Furthermore, we made comprehensive analyses on the unfolding pathway for various RNA pseudoknots in ion solutions. Our analyses for extensive pseudokonts and the wide range of monovalent/divalent ion concentrations verify that the unfolding pathway of RNA pseudoknots is mainly dependent on the relative stability of unfolded intermediate states, and show that the unfolding pathway of RNA pseudoknots can be significantly modulated by their sequences and solution ion conditions.
Collapse
Affiliation(s)
- Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan, China
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Lei Jin
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Chen-Jie Feng
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Lan Tan
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Multi-scale simulations of biological systems using the OPEP coarse-grained model. Biochem Biophys Res Commun 2017; 498:296-304. [PMID: 28917842 DOI: 10.1016/j.bbrc.2017.08.165] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/31/2017] [Indexed: 12/14/2022]
Abstract
Biomolecules are complex machines that are optimized by evolution to properly fulfill or contribute to a variety of biochemical tasks in the cellular environment. Computer simulations based on quantum mechanics and atomistic force fields have been proven to be a powerful microscope for obtaining valuable insights into many biological, physical, and chemical processes. Many interesting phenomena involve, however, a time scale and a number of degrees of freedom, notably if crowding is considered, that cannot be explored at an atomistic resolution. To bridge the gap between reality and simulation, many different advanced computational techniques and coarse-grained (CG) models have been developed. Here, we report some applications of the CG OPEP protein model to amyloid fibril formation, the response of catch-bond proteins to two types of fluid flow, and interactive simulations to fold peptides with well-defined 3D structures or with intrinsic disorder.
Collapse
|
8
|
Zavadlav J, Bevc S, Praprotnik M. Adaptive resolution simulations of biomolecular systems. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:821-835. [PMID: 28905203 DOI: 10.1007/s00249-017-1248-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/12/2017] [Accepted: 08/15/2017] [Indexed: 10/18/2022]
Abstract
In this review article, we discuss and analyze some recently developed hybrid atomistic-mesoscopic solvent models for multiscale biomolecular simulations. We focus on the biomolecular applications of the adaptive resolution scheme (AdResS), which allows solvent molecules to change their resolution back and forth between atomistic and coarse-grained representations according to their positions in the system. First, we discuss coupling of atomistic and coarse-grained models of salt solution using a 1-to-1 molecular mapping-i.e., one coarse-grained bead represents one water molecule-for development of a multiscale salt solution model. In order to make use of coarse-grained molecular models that are compatible with the MARTINI force field, one has to resort to a supramolecular mapping, in particular to a 4-to-1 mapping, where four water molecules are represented with one coarse-grained bead. To this end, bundled atomistic water models are employed, i.e., the relative movement of water molecules that are mapped to the same coarse-grained bead is restricted by employing harmonic springs. Supramolecular coupling has recently also been extended to polarizable coarse-grained water models with explicit charges. Since these coarse-grained models consist of several interaction sites, orientational degrees of freedom of the atomistic and coarse-grained representations are coupled via a harmonic energy penalty term. The latter aligns the dipole moments of both representations. The reviewed multiscale solvent models are ready to be used in biomolecular simulations, as illustrated in a few examples.
Collapse
Affiliation(s)
- Julija Zavadlav
- Department of Molecular Modeling, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia.,Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000, Ljubljana, Slovenia.,Chair of Computational Science, ETH Zurich, Clausiusstrasse 33, 8092, Zurich, Switzerland
| | - Staš Bevc
- Department of Molecular Modeling, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| | - Matej Praprotnik
- Department of Molecular Modeling, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia. .,Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Franco-Gonzalez JF, Zozoulenko IV. Molecular Dynamics Study of Morphology of Doped PEDOT: From Solution to Dry Phase. J Phys Chem B 2017; 121:4299-4307. [DOI: 10.1021/acs.jpcb.7b01510] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Igor V. Zozoulenko
- Laboratory of Organic Electronics,
ITN, Linköping University, 60174 Norrköping, Sweden
| |
Collapse
|
10
|
Shi YZ, Jin L, Wang FH, Zhu XL, Tan ZJ. Predicting 3D Structure, Flexibility, and Stability of RNA Hairpins in Monovalent and Divalent Ion Solutions. Biophys J 2016; 109:2654-2665. [PMID: 26682822 DOI: 10.1016/j.bpj.2015.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/09/2015] [Accepted: 11/06/2015] [Indexed: 10/24/2022] Open
Abstract
A full understanding of RNA-mediated biology would require the knowledge of three-dimensional (3D) structures, structural flexibility, and stability of RNAs. To predict RNA 3D structures and stability, we have previously proposed a three-bead coarse-grained predictive model with implicit salt/solvent potentials. In this study, we further develop the model by improving the implicit-salt electrostatic potential and including a sequence-dependent coaxial stacking potential to enable the model to simulate RNA 3D structure folding in divalent/monovalent ion solutions. The model presented here can predict 3D structures of RNA hairpins with bulges/internal loops (<77 nucleotides) from their sequences at the corresponding experimental ion conditions with an overall improved accuracy compared to the experimental data; the model also makes reliable predictions for the flexibility of RNA hairpins with bulge loops of different lengths at several divalent/monovalent ion conditions. In addition, the model successfully predicts the stability of RNA hairpins with various loops/stems in divalent/monovalent ion solutions.
Collapse
Affiliation(s)
- Ya-Zhou Shi
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Lei Jin
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Feng-Hua Wang
- Engineering Training Center, Jianghan University, Wuhan, China
| | - Xiao-Long Zhu
- Department of Physics, School of Physics and Information Engineering, Jianghan University, Wuhan, China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
11
|
Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid AE, Kolinski A. Coarse-Grained Protein Models and Their Applications. Chem Rev 2016; 116:7898-936. [DOI: 10.1021/acs.chemrev.6b00163] [Citation(s) in RCA: 555] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sebastian Kmiecik
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Dominik Gront
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Michal Kolinski
- Bioinformatics
Laboratory, Mossakowski Medical Research Center of the Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Lukasz Wieteska
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Department
of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | | | - Andrzej Kolinski
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
12
|
Trovato F, O'Brien EP. Insights into Cotranslational Nascent Protein Behavior from Computer Simulations. Annu Rev Biophys 2016; 45:345-69. [PMID: 27297399 DOI: 10.1146/annurev-biophys-070915-094153] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Regulation of protein stability and function in vivo begins during protein synthesis, when the ribosome translates a messenger RNA into a nascent polypeptide. Cotranslational processes involving a nascent protein include folding, binding to other macromolecules, enzymatic modification, and secretion through membranes. Experiments have shown that the rate at which the ribosome adds amino acids to the elongating nascent chain influences the efficiency of these processes, with alterations to these rates possibly contributing to diseases, including some types of cancer. In this review, we discuss recent insights into cotranslational processes gained from molecular simulations, how different computational approaches have been combined to understand cotranslational processes at multiple scales, and the new scenarios illuminated by these simulations. We conclude by suggesting interesting questions that computational approaches in this research area can address over the next few years.
Collapse
Affiliation(s)
- Fabio Trovato
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802;
| | - Edward P O'Brien
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802;
| |
Collapse
|
13
|
Jia Z, Chen J. Necessity of high‐resolution for coarse‐grained modeling of flexible proteins. J Comput Chem 2016; 37:1725-33. [DOI: 10.1002/jcc.24391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/11/2016] [Accepted: 03/27/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Zhiguang Jia
- Department of Biochemistry and Molecular BiophysicsKansas State UniversityManhattan Kansas66506
| | - Jianhan Chen
- Department of Biochemistry and Molecular BiophysicsKansas State UniversityManhattan Kansas66506
| |
Collapse
|
14
|
Maximova T, Moffatt R, Ma B, Nussinov R, Shehu A. Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics. PLoS Comput Biol 2016; 12:e1004619. [PMID: 27124275 PMCID: PMC4849799 DOI: 10.1371/journal.pcbi.1004619] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Investigation of macromolecular structure and dynamics is fundamental to understanding how macromolecules carry out their functions in the cell. Significant advances have been made toward this end in silico, with a growing number of computational methods proposed yearly to study and simulate various aspects of macromolecular structure and dynamics. This review aims to provide an overview of recent advances, focusing primarily on methods proposed for exploring the structure space of macromolecules in isolation and in assemblies for the purpose of characterizing equilibrium structure and dynamics. In addition to surveying recent applications that showcase current capabilities of computational methods, this review highlights state-of-the-art algorithmic techniques proposed to overcome challenges posed in silico by the disparate spatial and time scales accessed by dynamic macromolecules. This review is not meant to be exhaustive, as such an endeavor is impossible, but rather aims to balance breadth and depth of strategies for modeling macromolecular structure and dynamics for a broad audience of novices and experts.
Collapse
Affiliation(s)
- Tatiana Maximova
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
| | - Ryan Moffatt
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, United States of America
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amarda Shehu
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
- Department of Biongineering, George Mason University, Fairfax, Virginia, United States of America
- School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| |
Collapse
|
15
|
Shen L, Yang W. Quantum Mechanics/Molecular Mechanics Method Combined with Hybrid All-Atom and Coarse-Grained Model: Theory and Application on Redox Potential Calculations. J Chem Theory Comput 2016; 12:2017-27. [PMID: 26930454 DOI: 10.1021/acs.jctc.5b01107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We developed a new multiresolution method that spans three levels of resolution with quantum mechanical, atomistic molecular mechanical, and coarse-grained models. The resolution-adapted all-atom and coarse-grained water model, in which an all-atom structural description of the entire system is maintained during the simulations, is combined with the ab initio quantum mechanics and molecular mechanics method. We apply this model to calculate the redox potentials of the aqueous ruthenium and iron complexes by using the fractional number of electrons approach and thermodynamic integration simulations. The redox potentials are recovered in excellent accordance with the experimental data. The speed-up of the hybrid all-atom and coarse-grained water model renders it computationally more attractive. The accuracy depends on the hybrid all-atom and coarse-grained water model used in the combined quantum mechanical and molecular mechanical method. We have used another multiresolution model, in which an atomic-level layer of water molecules around redox center is solvated in supramolecular coarse-grained waters for the redox potential calculations. Compared with the experimental data, this alternative multilayer model leads to less accurate results when used with the coarse-grained polarizable MARTINI water or big multipole water model for the coarse-grained layer.
Collapse
Affiliation(s)
- Lin Shen
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Weitao Yang
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| |
Collapse
|
16
|
Dršata T, Lankaš F. Multiscale modelling of DNA mechanics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:323102. [PMID: 26194779 DOI: 10.1088/0953-8984/27/32/323102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mechanical properties of DNA are important not only in a wide range of biological processes but also in the emerging field of DNA nanotechnology. We review some of the recent developments in modeling these properties, emphasizing the multiscale nature of the problem. Modern atomic resolution, explicit solvent molecular dynamics simulations have contributed to our understanding of DNA fine structure and conformational polymorphism. These simulations may serve as data sources to parameterize rigid base models which themselves have undergone major development. A consistent buildup of larger entities involving multiple rigid bases enables us to describe DNA at more global scales. Free energy methods to impose large strains on DNA, as well as bead models and other approaches, are also briefly discussed.
Collapse
Affiliation(s)
- Tomáš Dršata
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague, Czech Republic. Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University Prague, Albertov 6, 128 43 Prague, Czech Republic
| | | |
Collapse
|
17
|
Exploring the potential of global protein–protein docking: an overview and critical assessment of current programs for automatic ab initio docking. Drug Discov Today 2015; 20:969-77. [DOI: 10.1016/j.drudis.2015.03.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/24/2015] [Accepted: 03/13/2015] [Indexed: 12/24/2022]
|
18
|
Zavadlav J, Melo MN, Marrink SJ, Praprotnik M. Adaptive resolution simulation of polarizable supramolecular coarse-grained water models. J Chem Phys 2015; 142:244118. [DOI: 10.1063/1.4923008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Julija Zavadlav
- Laboratory for Molecular Modeling, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Manuel N. Melo
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Matej Praprotnik
- Laboratory for Molecular Modeling, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| |
Collapse
|
19
|
Ozer G, Luque A, Schlick T. The chromatin fiber: multiscale problems and approaches. Curr Opin Struct Biol 2015; 31:124-39. [PMID: 26057099 DOI: 10.1016/j.sbi.2015.04.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 12/20/2022]
Abstract
The structure of chromatin, affected by many factors from DNA linker lengths to posttranslational modifications, is crucial to the regulation of eukaryotic cells. Combined experimental and computational methods have led to new insights into its structural and dynamical features, from interactions due to the flexible core histone tails or linker histones to the physical mechanism driving the formation of chromosomal domains. Here we present a perspective of recent advances in chromatin modeling techniques at the atomic, mesoscopic, and chromosomal scales with a view toward developing multiscale computational strategies to integrate such findings. Innovative modeling methods that connect molecular to chromosomal scales are crucial for interpreting experiments and eventually deciphering the complex dynamic organization and function of chromatin in the cell.
Collapse
Affiliation(s)
- Gungor Ozer
- Department of Chemistry, 100 Washington Square East, New York University, New York, NY 10003, USA
| | - Antoni Luque
- Department of Chemistry, 100 Washington Square East, New York University, New York, NY 10003, USA; Current address: Department of Mathematics & Statistics and Viral Information Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-7720, USA
| | - Tamar Schlick
- Department of Chemistry, 100 Washington Square East, New York University, New York, NY 10003, USA; Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA; NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China.
| |
Collapse
|
20
|
|
21
|
Pastor N, Amero C. Information flow and protein dynamics: the interplay between nuclear magnetic resonance spectroscopy and molecular dynamics simulations. FRONTIERS IN PLANT SCIENCE 2015; 6:306. [PMID: 25999971 PMCID: PMC4419604 DOI: 10.3389/fpls.2015.00306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/17/2015] [Indexed: 06/04/2023]
Abstract
Proteins participate in information pathways in cells, both as links in the chain of signals, and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and motion changes, which can be sensed by the following link in the chain of information. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations represent powerful tools for examining the time-dependent function of biological molecules. The recent advances in NMR and the availability of faster computers have opened the door to more detailed analyses of structure, dynamics, and interactions. Here we briefly describe the recent applications that allow NMR spectroscopy and MD simulations to offer unique insight into the basic motions that underlie information transfer within and between cells.
Collapse
Affiliation(s)
- Nina Pastor
- Laboratorio de Dinámica de Proteínas y Ácidos Nucleicos, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Carlos Amero
- Laboratorio de Bioquímica y Resonancia Magnética Nuclear, Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
22
|
Molecular dynamics simulations of large macromolecular complexes. Curr Opin Struct Biol 2015; 31:64-74. [PMID: 25845770 DOI: 10.1016/j.sbi.2015.03.007] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/11/2022]
Abstract
Connecting dynamics to structural data from diverse experimental sources, molecular dynamics simulations permit the exploration of biological phenomena in unparalleled detail. Advances in simulations are moving the atomic resolution descriptions of biological systems into the million-to-billion atom regime, in which numerous cell functions reside. In this opinion, we review the progress, driven by large-scale molecular dynamics simulations, in the study of viruses, ribosomes, bioenergetic systems, and other diverse applications. These examples highlight the utility of molecular dynamics simulations in the critical task of relating atomic detail to the function of supramolecular complexes, a task that cannot be achieved by smaller-scale simulations or existing experimental approaches alone.
Collapse
|
23
|
Kar P, Feig M. Recent advances in transferable coarse-grained modeling of proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 96:143-80. [PMID: 25443957 PMCID: PMC5366245 DOI: 10.1016/bs.apcsb.2014.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Computer simulations are indispensable tools for studying the structure and dynamics of biological macromolecules. Biochemical processes occur on different scales of length and time. Atomistic simulations cannot cover the relevant spatiotemporal scales at which the cellular processes occur. To address this challenge, coarse-grained (CG) modeling of the biological systems is employed. Over the last few years, many CG models for proteins continue to be developed. However, many of them are not transferable with respect to different systems and different environments. In this review, we discuss those CG protein models that are transferable and that retain chemical specificity. We restrict ourselves to CG models of soluble proteins only. We also briefly review recent progress made in the multiscale hybrid all-atom/CG simulations of proteins.
Collapse
Affiliation(s)
- Parimal Kar
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA; Department of Chemistry, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
24
|
Vargiu AV, Magistrato A. Atomistic-Level Portrayal of Drug-DNA Interplay: A History of Courtships and Meetings Revealed by Molecular Simulations. ChemMedChem 2014; 9:1966-81. [DOI: 10.1002/cmdc.201402203] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Indexed: 12/19/2022]
|
25
|
Shen L, Hu H. Resolution-Adapted All-Atomic and Coarse-Grained Model for Biomolecular Simulations. J Chem Theory Comput 2014; 10:2528-36. [DOI: 10.1021/ct401029k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Lin Shen
- Department
of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hao Hu
- Department
of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation, Kejizhong Second Road, Shenzhen, China
| |
Collapse
|