1
|
Gregorovič A. Ab initio calculations of electric field gradients in H-bond rich molecular crystals with nearly experimental accuracy. J Chem Phys 2025; 162:034105. [PMID: 39812250 DOI: 10.1063/5.0237730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
Ab initio calculations of electric field gradients (EFGs) in molecular crystals have advanced significantly due to the gauge including projector augmented wave (GIPAW) formalism, which accounts for the infinite periodicity in crystals. However, theoretical accuracies still lag behind experimental ones, making it challenging to distinguish experimentally distinguishable similar structures, a deficiency largely attributed to the limitation of GIPAW codes to generalized gradient approximation (GGA) density functional theory (DFT) functionals. In this study, we investigate whether hybrid DFT functionals can enhance the EFG calculation accuracy and the associated geometry optimization. Using the many-body expansion method, we focus on nitrogen EFGs in amino acids with complex H-bonding, which are often poorly described with GGA functionals. Our results show that both functionals provide highly accurate calculations that surpass current studies and approach experimental precision. The accuracies are also almost three times higher than available GIPAW/GGA calculations in the literature. However, we show that this difference is not due to the GGA functional but rather due to the improper selection of the nitrogen quadrupole moment.
Collapse
|
2
|
Saad A, Bechinger B. Solid-state NMR spectroscopy for structural studies of polypeptides and lipids in extended physiological membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184162. [PMID: 37949788 DOI: 10.1016/j.bbamem.2023.184162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 11/12/2023]
Abstract
Solid-state NMR is a quickly developing technique that allows one to obtain structural information at atomic resolution in extended lipid bilayers in a rather unique manner. Two approaches have been developed for membrane proteins and peptides namely magic angle sample spinning and the use of uniaxially oriented membrane samples. The state-of-the-art of both approaches will be introduced and the perspectives of solid-state NMR spectroscopy in the context of other structural biology techniques, pressing biomedical questions and membrane biophysics will be discussed.
Collapse
Affiliation(s)
- Ahmad Saad
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4, rue Blaise Pascal, 67070 Strasbourg, France
| | - Burkhard Bechinger
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4, rue Blaise Pascal, 67070 Strasbourg, France; Institut Universitaire de France, 75005 Paris, France.
| |
Collapse
|
3
|
Duma L, Senicourt L, Rigaud B, Papadopoulos V, Lacapère JJ. Solid-state NMR study of structural heterogeneity of the apo WT mouse TSPO reconstituted in liposomes. Biochimie 2023; 205:73-85. [PMID: 36029902 DOI: 10.1016/j.biochi.2022.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
Abstract
In the last decades, ligand binding to human TSPO has been largely used in clinical neuroimaging, but little is known about the interaction mechanism. Protein conformational mobility plays a key role in the ligand recognition and both, ligand-free and ligand-bound structures, are mandatory for characterizing the molecular binding mechanism. In the absence of crystals for mammalian TSPO, we have exploited solid-state nuclear magnetic resonance (ssNMR) spectroscopy under magic-angle spinning (MAS) to study the apo form of recombinant mouse TSPO (mTSPO) reconstituted in lipids. This environment has been previously described to permit binding of its high-affinity drug ligand PK11195 and appears therefore favourable for the study of molecular dynamics. We have optimized the physical conditions to get the best resolution for MAS ssNMR spectra of the ligand-free mTSPO. We have compared and combined various ssNMR spectra to get dynamical information either for the lipids or for the mTSPO. Partial assignment of residue types suggests few agreements with the published solution NMR assignment of the PK11195-bound mTSPO in DPC detergent. Moreover, we were able to observe some lateral chains of aromatic residues that were not assigned in solution. 13C double-quantum NMR spectroscopy shows remarkable dynamics for ligand-free mTSPO in lipids which may have significant implications on the recognition of the ligand and/or other protein partners.
Collapse
Affiliation(s)
- Luminita Duma
- Champagne-Ardenne University, CNRS, ICMR UMR, 7312, Reims, France.
| | - Lucile Senicourt
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 4 Place Jussieu, F-75005, Paris, France
| | - Baptiste Rigaud
- CNRS Institut des Matériaux de Paris Centre (FR2482), 4 Place Jussieu, 75005, Paris, France
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jean-Jacques Lacapère
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 4 Place Jussieu, F-75005, Paris, France
| |
Collapse
|
4
|
Ghosh RK, Hilario E, Chang CEA, Mueller LJ, Dunn MF. Allosteric regulation of substrate channeling: Salmonella typhimurium tryptophan synthase. Front Mol Biosci 2022; 9:923042. [PMID: 36172042 PMCID: PMC9512447 DOI: 10.3389/fmolb.2022.923042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
The regulation of the synthesis of L-tryptophan (L-Trp) in enteric bacteria begins at the level of gene expression where the cellular concentration of L-Trp tightly controls expression of the five enzymes of the Trp operon responsible for the synthesis of L-Trp. Two of these enzymes, trpA and trpB, form an αββα bienzyme complex, designated as tryptophan synthase (TS). TS carries out the last two enzymatic processes comprising the synthesis of L-Trp. The TS α-subunits catalyze the cleavage of 3-indole D-glyceraldehyde 3′-phosphate to indole and D-glyceraldehyde 3-phosphate; the pyridoxal phosphate-requiring β-subunits catalyze a nine-step reaction sequence to replace the L-Ser hydroxyl by indole giving L-Trp and a water molecule. Within αβ dimeric units of the αββα bienzyme complex, the common intermediate indole is channeled from the α site to the β site via an interconnecting 25 Å-long tunnel. The TS system provides an unusual example of allosteric control wherein the structures of the nine different covalent intermediates along the β-reaction catalytic path and substrate binding to the α-site provide the allosteric triggers for switching the αββα system between the open (T) and closed (R) allosteric states. This triggering provides a linkage that couples the allosteric conformational coordinate to the covalent chemical reaction coordinates at the α- and β-sites. This coupling drives the α- and β-sites between T and R conformations to achieve regulation of substrate binding and/or product release, modulation of the α- and β-site catalytic activities, prevention of indole escape from the confines of the active sites and the interconnecting tunnel, and synchronization of the α- and β-site catalytic activities. Here we review recent advances in the understanding of the relationships between structure, function, and allosteric regulation of the complex found in Salmonella typhimurium.
Collapse
Affiliation(s)
- Rittik K. Ghosh
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Eduardo Hilario
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Chia-en A. Chang
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Leonard J. Mueller
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Leonard J. Mueller, ; Michael F. Dunn,
| | - Michael F. Dunn
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Leonard J. Mueller, ; Michael F. Dunn,
| |
Collapse
|
5
|
Paluch P, Augustyniak R, Org ML, Vanatalu K, Kaldma A, Samoson A, Stanek J. NMR Assignment of Methyl Groups in Immobilized Proteins Using Multiple-Bond 13C Homonuclear Transfers, Proton Detection, and Very Fast MAS. Front Mol Biosci 2022; 9:828785. [PMID: 35425812 PMCID: PMC9002630 DOI: 10.3389/fmolb.2022.828785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
In nuclear magnetic resonance spectroscopy of proteins, methyl protons play a particular role as extremely sensitive reporters on dynamics, allosteric effects, and protein–protein interactions, accessible even in high-molecular-weight systems approaching 1 MDa. The notorious issue of their chemical shift assignment is addressed here by a joint use of solid-state 1H-detected methods at very fast (nearly 100 kHz) magic-angle spinning, partial deuteration, and high-magnetic fields. The suitability of a series of RF schemes is evaluated for the efficient coherence transfer across entire 13C side chains of methyl-containing residues, which is key for establishing connection between methyl and backbone 1H resonances. The performance of ten methods for recoupling of either isotropic 13C–13C scalar or anisotropic dipolar interactions (five variants of TOBSY, FLOPSY, DIPSI, WALTZ, RFDR, and DREAM) is evaluated experimentally at two state-of-the-art magic-angle spinning (55 and 94.5 kHz) and static magnetic field conditions (18.8 and 23.5 T). Model isotopically labeled compounds (alanine and Met-Leu-Phe tripeptide) and ILV-methyl and amide-selectively protonated, and otherwise deuterated chicken α-spectrin SH3 protein are used as convenient reference systems. Spin dynamics simulations in SIMPSON are performed to determine optimal parameters of these RF schemes, up to recently experimentally attained spinning frequencies (200 kHz) and B0 field strengths (28.2 T). The concept of linearization of 13C side chain by appropriate isotope labeling is revisited and showed to significantly increase sensitivity of methyl-to-backbone correlations. A resolution enhancement provided by 4D spectroscopy with non-uniform (sparse) sampling is demonstrated to remove ambiguities in simultaneous resonance assignment of methyl proton and carbon chemical shifts.
Collapse
Affiliation(s)
- Piotr Paluch
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Łódź, Poland
| | | | - Mai-Liis Org
- Tallin University of Technology, Tallinn, Estonia
| | | | - Ats Kaldma
- Tallin University of Technology, Tallinn, Estonia
| | - Ago Samoson
- Tallin University of Technology, Tallinn, Estonia
| | - Jan Stanek
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
- *Correspondence: Jan Stanek,
| |
Collapse
|
6
|
Daskalov A, El Mammeri N, Lends A, Shenoy J, Lamon G, Fichou Y, Saad A, Martinez D, Morvan E, Berbon M, Grélard A, Kauffmann B, Ferber M, Bardiaux B, Habenstein B, Saupe SJ, Loquet A. Structures of Pathological and Functional Amyloids and Prions, a Solid-State NMR Perspective. Front Mol Neurosci 2021; 14:670513. [PMID: 34276304 PMCID: PMC8280340 DOI: 10.3389/fnmol.2021.670513] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Infectious proteins or prions are a remarkable class of pathogens, where pathogenicity and infectious state correspond to conformational transition of a protein fold. The conformational change translates into the formation by the protein of insoluble amyloid aggregates, associated in humans with various neurodegenerative disorders and systemic protein-deposition diseases. The prion principle, however, is not limited to pathogenicity. While pathological amyloids (and prions) emerge from protein misfolding, a class of functional amyloids has been defined, consisting of amyloid-forming domains under natural selection and with diverse biological roles. Although of great importance, prion amyloid structures remain challenging for conventional structural biology techniques. Solid-state nuclear magnetic resonance (SSNMR) has been preferentially used to investigate these insoluble, morphologically heterogeneous aggregates with poor crystallinity. SSNMR methods have yielded a wealth of knowledge regarding the fundamentals of prion biology and have helped to solve the structures of several prion and prion-like fibrils. Here, we will review pathological and functional amyloid structures and will discuss some of the obtained structural models. We will finish the review with a perspective on integrative approaches combining solid-state NMR, electron paramagnetic resonance and cryo-electron microscopy, which can complement and extend our toolkit to structurally explore various facets of prion biology.
Collapse
Affiliation(s)
- Asen Daskalov
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Nadia El Mammeri
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Alons Lends
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | | | - Gaelle Lamon
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Yann Fichou
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Ahmad Saad
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Denis Martinez
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Estelle Morvan
- CNRS, INSERM, IECB, UMS 3033, University of Bordeaux, Pessac, France
| | - Melanie Berbon
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Axelle Grélard
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Brice Kauffmann
- CNRS, INSERM, IECB, UMS 3033, University of Bordeaux, Pessac, France
| | | | | | | | - Sven J. Saupe
- CNRS, IBGC UMR 5095, University of Bordeaux, Bordeaux, France
| | - Antoine Loquet
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| |
Collapse
|
7
|
Kim M, Jo S, Jeong JH, Kim Y. Optimized High-Yield Purification of Obesity-Associated Melanocortin 4 Receptor. Protein Pept Lett 2021; 28:63-73. [PMID: 32484077 DOI: 10.2174/0929866527666200525162928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/26/2020] [Accepted: 04/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Obesity has emerged as a global public health challenge associated with increased risk of hyperlipidemia and hypertension. It contributes to high sympathetic activity and increased catecholamine levels. The hypothalamic melanocortin system is known to regulate the energy homeostasis. The role of melanocortin 4 receptor (MC4R) has been demonstrated pharmacologically and in animal studies, which showed that severe obesity in MC4R knockout mice was caused by increased food intake and decreased energy consumption. Over 70 multiple different mis- -sense and nonsense mutations in hMC4R have been found at a high frequency of 2-8% in severe early onset or hereditary obesity. The single amino acid variation (D90N) located in the second transmembrane domain (TM2) of MC4R results in accelerated growth and childhood onset obesity. Interestingly, the functional characterization of D90N hMC4R mutant TM2 (m-hMC4R-TM2) revealed normal cell surface expression and binding with agonist similar to the hMC4R wild-type TM2 (wt-hMC4R-TM2) but loss of signal transduction mediated via Gs/adenylyl cyclase activation. It is essential to delineate the three-dimensional structure of MC4Rs in order to elucidate their functional aspects. OBJECTIVE In this study, we demonstrate the optimized expression and isolation of wt/m-hMC4R-TM2 proteins under different chemical cleavage reaction times and purification procedures via SDS precipitation. The solid-state NMR spectroscopy was carried out to study the structure of wt/m-hMC4R- TM2 protein in the anisotropic phospholipid bicelles. METHODS The KSI-wt/m-hMC4R-TM2 fusion proteins developed in cell culture with LB medium. In order to isolate the expressed fusion protein from the cell, ultrasonication, Ni-NTA affinity chromatography, dialysis, and lyophilization techniques were used. Then, to obtain a protein with higher purity and higher yield, the CNBr chemical cleavage time was subdivided into 30 minutes, 1 h, 2 h, 3 h, and 4 h. Purification process was performed using FPLC, and 100 mM KCl and dialysis were used to remove the SDS. CD spectrometer, MALDI-TOF, solution-state NMR, and solid-state NMR were used to confirmed purity and structure of the wt/m-hMC4R-TM2. RESULTS The precipitation method was used to remove the SDS bound to proteins as KCl-SDS. We optimized the 2 h cleavage reaction times for both wt-hMC4R-TM2 and m-hMC4R-TM2 depending on the purity based on mass spectra and 1H-15N HSQC spectra and the yield after final purification. The 1D 1H-15N CP (Cross polarization) solid-state NMR spectra suggest that the wt/m-hMC4R- TM2 undergo rotational diffusion around a perpendicular axis along the bilayer normal. CONCLUSION We expressed wt/m-hMC4R-TM2 in E.coli and optimized the isolation and purification process, especially CNBr chemical cleavage time. The efficiency of KCl-SDS precipitation was confirmed via MALDI-TOF MS and the pure proteins obtained using this method were characterized by CD spectroscopy and solution-state NMR. The results of 1H-15N HSQC spectra in solution- state NMR also show the probability for structural studies. The 1D 1H-15N CP solid-state NMR spectra indicate that most of the residues in both the wt/m-hMC4R-TM2 peptides are integrated into the membrane.
Collapse
Affiliation(s)
- Minseon Kim
- Department of Chemistry, Hankuk University of Foreign Studies, Mohyeon, Yongin, 17035, Korea
| | - Soyeon Jo
- Department of Chemistry, Hankuk University of Foreign Studies, Mohyeon, Yongin, 17035, Korea
| | - Ji-Ho Jeong
- Department of Chemistry, Hankuk University of Foreign Studies, Mohyeon, Yongin, 17035, Korea
| | - Yongae Kim
- Department of Chemistry, Hankuk University of Foreign Studies, Mohyeon, Yongin, 17035, Korea
| |
Collapse
|
8
|
El Hariri El Nokab M, van der Wel PC. Use of solid-state NMR spectroscopy for investigating polysaccharide-based hydrogels: A review. Carbohydr Polym 2020; 240:116276. [DOI: 10.1016/j.carbpol.2020.116276] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/22/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022]
|
9
|
Buslaev P, Mustafin K, Gushchin I. Principal component analysis highlights the influence of temperature, curvature and cholesterol on conformational dynamics of lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183253. [PMID: 32142820 DOI: 10.1016/j.bbamem.2020.183253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/14/2020] [Accepted: 02/27/2020] [Indexed: 01/06/2023]
Abstract
Membrane lipids are inherently highly dynamic molecules. Currently, it is difficult to probe the structures of individual lipids experimentally at the timescales corresponding to atomic motions, and consequently molecular dynamics simulations are used widely. In our previous work, we have introduced the principal component analysis (PCA) as a convenient framework for comprehensive quantitative description of lipid motions. Here, we present a newly developed open source script, PCAlipids, which automates the analysis and allows us to refine the approach and test its limitations. We use PCAlipids to determine the influence of temperature, cholesterol and curvature on individual lipids, and show that the most prominent lipid tail scissoring motion is strongly affected by these factors and allows tracking of phase transition. Addition of cholesterol affects the conformations and selectively changes the dynamics of lipid molecules, impacting the large-amplitude motions. Introduction of curvature biases the conformational ensembles towards more extended structures. We hope that the developed approach will be useful for understanding the molecular basis of different processes occurring in lipid membrane systems and will stimulate development of complementary experimental techniques probing the conformations of individual lipid molecules.
Collapse
Affiliation(s)
- P Buslaev
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - K Mustafin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - I Gushchin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| |
Collapse
|
10
|
Mandal S, Sigurdsson ST. Water-soluble BDPA radicals with improved persistence. Chem Commun (Camb) 2020; 56:13121-13124. [DOI: 10.1039/d0cc04920d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
1,3-Bis(diphenylene)-2-phenylallyl (BDPA) radicals are promising polarizing agents for dynamic nuclear polarization (DNP) NMR spectroscopy. BDPAs containing tetraalkyl/aryl-ammonium groups have increased persistence and solubility in polar solvents.
Collapse
Affiliation(s)
- Sucharita Mandal
- University of Iceland
- Department of Chemistry
- Science Institute
- Reykjavik 107
- Iceland
| | | |
Collapse
|
11
|
Zhang R, Nishiyama Y, Ramamoorthy A. Exploiting heterogeneous time scale of dynamics to enhance 2D HETCOR solid-state NMR sensitivity. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 309:106615. [PMID: 31669793 PMCID: PMC11688153 DOI: 10.1016/j.jmr.2019.106615] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/11/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Multidimensional solid-state NMR spectroscopy plays a significant role in offering atomic-level insights into molecular systems. In particular, heteronuclear chemical shift correlation (HETCOR) experiments could provide local chemical and structural information in terms of spatial heteronuclear proximity and through-bond connectivity. In solid state, the transfer of magnetization between heteronuclei, a key step in HETCOR experiments, is usually achieved using cross-polarization (CP) or insensitive nuclei enhanced by polarization transfer (INEPT) depending on the sample characteristics and magic-angle-spinning (MAS) frequency. But, for a multiphase system constituting molecular components that differ in their time scales of mobilities, CP efficiency is pretty low for mobile components because of the averaging of heteronuclear dipolar couplings whereas INEPT is inefficient for immobile components due to the short T2 and can yield through-space connectivity due to strong proton spin diffusion for immobile components especially under moderate spinning speeds. Herein, in this study we present two 2D pulse sequences that enable the sequential acquisition of 13C/1H HETCOR NMR spectra for the rigid and mobile components by taking full advantage of the abundant proton magnetization in a single experiment with barely increasing the overall experimental time. In particular, the 13C-detected HETCOR experiment could be applied under slow MAS conditions, where a multiple-pulse sequence is typically employed to enhance 1H spectral resolution in the indirect dimension. In contrast, the 1H-detected HETCOR experiment should be applied under ultrafast MAS, where CP and heteronuclear nuclear Overhauser effect (NOE) polarization transfer are combined to enhance 13C signal intensities for mobile components. These pulse sequences are experimentally demonstrated on two model systems to obtain 2D 13C/1H chemical shift correlation spectra of rigid and mobile components independently and separately. These pulse sequences can be used for dynamics based spectral editing and resonance assignments. Therefore, we believe the proposed 2D HETCOR NMR pulse sequences will be beneficial for the structural studies of heterogeneous systems containing molecular components that differ in their time scale of motions for understanding the interplay of structures and properties.
Collapse
Affiliation(s)
- Rongchun Zhang
- Biophysics and Department of Chemistry, Biomedical Engineering, Maromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Yusuke Nishiyama
- NMR Science and Development Division, RIKEN SPring-8 Center, Nanocrystallography Unit, RIKEN-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan; JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558, Japan.
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, Biomedical Engineering, Maromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
12
|
Orellana L. Large-Scale Conformational Changes and Protein Function: Breaking the in silico Barrier. Front Mol Biosci 2019; 6:117. [PMID: 31750315 PMCID: PMC6848229 DOI: 10.3389/fmolb.2019.00117] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022] Open
Abstract
Large-scale conformational changes are essential to link protein structures with their function at the cell and organism scale, but have been elusive both experimentally and computationally. Over the past few years developments in cryo-electron microscopy and crystallography techniques have started to reveal multiple snapshots of increasingly large and flexible systems, deemed impossible only short time ago. As structural information accumulates, theoretical methods become central to understand how different conformers interconvert to mediate biological function. Here we briefly survey current in silico methods to tackle large conformational changes, reviewing recent examples of cross-validation of experiments and computational predictions, which show how the integration of different scale simulations with biological information is already starting to break the barriers between the in silico, in vitro, and in vivo worlds, shedding new light onto complex biological problems inaccessible so far.
Collapse
Affiliation(s)
- Laura Orellana
- Institutionen för Biokemi och Biofysik, Stockholms Universitet, Stockholm, Sweden.,Science for Life Laboratory, Solna, Sweden
| |
Collapse
|
13
|
Solid-State NMR Approaches to Study Protein Structure and Protein-Lipid Interactions. Methods Mol Biol 2019. [PMID: 31218633 DOI: 10.1007/978-1-4939-9512-7_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Solid-state NMR spectroscopy has been developed for the investigation of membrane-associated polypeptides and remains one of the few techniques to reveal high-resolution structural information in liquid-disordered phospholipid bilayers. In particular, oriented samples have been used to investigate the structure, dynamics and topology of membrane polypeptides. Much of the previous solid-state NMR work has been developed and performed on peptides but the technique is constantly expanding towards larger membrane proteins. Here, a number of protocols are presented describing among other the reconstitution of membrane proteins into oriented membranes, monitoring membrane alignment by 31P solid-state NMR spectroscopy, investigations of the protein by one- and two-dimensional 15N solid-state NMR and measurements of the lipid order parameters using 2H solid-state NMR spectroscopy. Using such methods solid-state NMR spectroscopy has revealed a detailed picture of the ensemble of both lipids and proteins and their mutual interdependence in the bilayer environment.
Collapse
|
14
|
Götzke L, Schaper G, März J, Kaden P, Huittinen N, Stumpf T, Kammerlander KK, Brunner E, Hahn P, Mehnert A, Kersting B, Henle T, Lindoy LF, Zanoni G, Weigand JJ. Coordination chemistry of f-block metal ions with ligands bearing bio-relevant functional groups. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Pinto C, Mance D, Julien M, Daniels M, Weingarth M, Baldus M. Studying assembly of the BAM complex in native membranes by cellular solid-state NMR spectroscopy. J Struct Biol 2019; 206:1-11. [DOI: 10.1016/j.jsb.2017.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/24/2017] [Accepted: 11/28/2017] [Indexed: 12/31/2022]
|
16
|
Salnikov ES, Aisenbrey C, Anantharamaiah G, Bechinger B. Solid-state NMR structural investigations of peptide-based nanodiscs and of transmembrane helices in bicellar arrangements. Chem Phys Lipids 2019; 219:58-71. [DOI: 10.1016/j.chemphyslip.2019.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 02/08/2023]
|
17
|
Ghosh C, Harmouche N, Bechinger B, Haldar J. Aryl-Alkyl-Lysines Interact with Anionic Lipid Components of Bacterial Cell Envelope Eliciting Anti-Inflammatory and Antibiofilm Properties. ACS OMEGA 2018; 3:9182-9190. [PMID: 31459052 PMCID: PMC6645134 DOI: 10.1021/acsomega.8b01052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/30/2018] [Indexed: 05/05/2023]
Abstract
The emergence of bacterial resistance and hesitance in approving new drugs has bolstered research on membrane-active agents such as antimicrobial peptides and their synthetic derivatives as therapeutic alternatives against bacterial infections. Herein, we document the action of aryl-alkyl-lysines on liposomes mimicking bacterial membranes using solid-state nuclear magnetic resonance spectroscopy. A significant perturbation of the lipid thickness and order parameter of the lipid membrane was observed upon treatment with this class of compounds. Encouraged by these results, the ability of the most active compound (NCK-10) to interact with aggregates of lipopolysaccharides (LPSs) was studied. In vitro experiments showed that NCK-10 was able to prevent the LPS-induced stimulation of proinflammatory cytokines such as tumor necrosis factor-α and interleukin-6. The compound could also disrupt the biofilms of Pseudomonas aeruginosa in vitro and bring down the bacterial burden by more than 99% in a mice model of burn infections caused by the biofilms of P. aeruginosa.
Collapse
Affiliation(s)
- Chandradhish Ghosh
- Antimicrobial Research
Laboratory, New Chemistry Unit, Jawaharlal
Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Nicole Harmouche
- Université
de Strasbourg/CNRS, UMR7177, Institut de Chimie, 67008 Strasbourg, France
| | - Burkhard Bechinger
- Université
de Strasbourg/CNRS, UMR7177, Institut de Chimie, 67008 Strasbourg, France
| | - Jayanta Haldar
- Antimicrobial Research
Laboratory, New Chemistry Unit, Jawaharlal
Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
- E-mail: (J.H.)
| |
Collapse
|
18
|
Mitchell RA, Luwor RB, Burgess AW. Epidermal growth factor receptor: Structure-function informing the design of anticancer therapeutics. Exp Cell Res 2018; 371:1-19. [PMID: 30098332 DOI: 10.1016/j.yexcr.2018.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022]
Abstract
Research on the epidermal growth factor (EGF) family and the family of receptors (EGFR) has progressed rapidly in recent times. New crystal structures of the ectodomains with different ligands, the activation of the kinase domain through oligomerisation and the use of fluorescence techniques have revealed profound conformational changes on ligand binding. The control of cell signaling from the EGFR-family is complex, with heterodimerisation, ligand affinity and signaling cross-talk influencing cellular outcomes. Analysis of tissue homeostasis indicates that the control of pro-ligand processing is likely to be as important as receptor activation events. Several members of the EGFR-family are overexpressed and/or mutated in cancer cells. The perturbation of EGFR-family signaling drives the malignant phenotype of many cancers and both inhibitors and antagonists of signaling from these receptors have already produced therapeutic benefits for patients. The design of affibodies, antibodies, small molecule inhibitors and even immunotherapeutic drugs targeting the EGFR-family has yielded promising new approaches to improving outcomes for cancer patients. In this review, we describe recent discoveries which have increased our understanding of the structure and dynamics of signaling from the EGFR-family, the roles of ligand processing and receptor cross-talk. We discuss the relevance of these studies to the development of strategies for designing more effective targeted treatments for cancer patients.
Collapse
Affiliation(s)
- Ruth A Mitchell
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Rodney B Luwor
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Antony W Burgess
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Australia; Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia.
| |
Collapse
|
19
|
Shi X, Prasanna C, Nagashima T, Yamazaki T, Pervushin K, Nordenskiöld L. Structure and Dynamics in the Nucleosome Revealed by Solid-State NMR. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiangyan Shi
- School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Chinmayi Prasanna
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - Toshio Nagashima
- RIKEN Center for Life Science Technologies; Yokohama City Kanagawa 230-0045 Japan
| | - Toshio Yamazaki
- RIKEN Center for Life Science Technologies; Yokohama City Kanagawa 230-0045 Japan
| | - Konstantin Pervushin
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - Lars Nordenskiöld
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| |
Collapse
|
20
|
Supramolecular Organization of Apolipoprotein-A-I-Derived Peptides within Disc-like Arrangements. Biophys J 2018; 115:467-477. [PMID: 30054032 DOI: 10.1016/j.bpj.2018.06.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 01/05/2023] Open
Abstract
Apolipoprotein A-I is the major protein component of high-density lipoproteins and fulfils important functions in lipid metabolism. Its structure consists of a chain of tandem domains of amphipathic helices. Using this protein as a template membrane scaffolding protein, class A amphipathic helical peptides were designed to support the amphipathic helix theory and later as therapeutic tools in biomedicine. Here, we investigated the lipid interactions of two apolipoprotein-A-I-derived class A amphipathic peptides, 14A (Ac-DYLKA FYDKL KEAF-NH2) and 18A (Ac-DWLKA FYDKV AEKLK EAF- NH2), including the disc-like supramolecular structures they form with phospholipids. Thus, the topologies of 14A and 18A in phospholipid bilayers have been determined by oriented solid-state NMR spectroscopy. Whereas at a peptide-to-lipid ratio of 2 mol% the peptides align parallel to the bilayer surface, at 7.5 mol% disc-like structures are formed that spontaneously orient in the magnetic field of the NMR spectrometer. From a comprehensive data set of four 15N- or 2H-labeled positions of 14A, a tilt angle, which deviates from perfectly in-planar by 14°, and a model for the peptidic rim structure have been obtained. The tilt and helical pitch angles are well suited to cover the hydrophobic chain region of the bilayer when two peptide helices form a head-to-tail dimer. Thus, the detailed topology found in this work agrees with the peptides forming the rim of nanodiscs in a double belt arrangement.
Collapse
|
21
|
Shi X, Prasanna C, Nagashima T, Yamazaki T, Pervushin K, Nordenskiöld L. Structure and Dynamics in the Nucleosome Revealed by Solid-State NMR. Angew Chem Int Ed Engl 2018; 57:9734-9738. [DOI: 10.1002/anie.201804707] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/23/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Xiangyan Shi
- School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Chinmayi Prasanna
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - Toshio Nagashima
- RIKEN Center for Life Science Technologies; Yokohama City Kanagawa 230-0045 Japan
| | - Toshio Yamazaki
- RIKEN Center for Life Science Technologies; Yokohama City Kanagawa 230-0045 Japan
| | - Konstantin Pervushin
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - Lars Nordenskiöld
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| |
Collapse
|
22
|
Zhao Y, Xie H, Wang L, Shen Y, Chen W, Song B, Zhang Z, Zheng A, Lin Q, Fu R, Wang J, Yang J. Gating Mechanism of Aquaporin Z in Synthetic Bilayers and Native Membranes Revealed by Solid-State NMR Spectroscopy. J Am Chem Soc 2018; 140:7885-7895. [DOI: 10.1021/jacs.8b03446] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yongxiang Zhao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Huayong Xie
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Lili Wang
- NUS Environmental Research Institute, National University of Singapore, 117411 Singapore
- Department of Biological Sciences, National University of Singapore, 117411 Singapore
| | - Yang Shen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Wei Chen
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Benteng Song
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Zhengfeng Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Anmin Zheng
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Qingsong Lin
- NUS Environmental Research Institute, National University of Singapore, 117411 Singapore
- Department of Biological Sciences, National University of Singapore, 117411 Singapore
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| |
Collapse
|
23
|
Hu B, Yao ZP. Detection of native proteins using solid-substrate electrospray ionization mass spectrometry with nonpolar solvents. Anal Chim Acta 2018; 1004:51-57. [DOI: 10.1016/j.aca.2017.11.079] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 12/11/2022]
|
24
|
Tolchard J, Pandey MK, Berbon M, Noubhani A, Saupe SJ, Nishiyama Y, Habenstein B, Loquet A. Detection of side-chain proton resonances of fully protonated biosolids in nano-litre volumes by magic angle spinning solid-state NMR. JOURNAL OF BIOMOLECULAR NMR 2018; 70:177-185. [PMID: 29502224 DOI: 10.1007/s10858-018-0168-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
We present a new solid-state NMR proton-detected three-dimensional experiment dedicated to the observation of protein proton side chain resonances in nano-liter volumes. The experiment takes advantage of very fast magic angle spinning and double quantum 13C-13C transfer to establish efficient (H)CCH correlations detected on side chain protons. Our approach is demonstrated on the HET-s prion domain in its functional amyloid fibrillar form, fully protonated, with a sample amount of less than 500 µg using a MAS frequency of 70 kHz. The majority of aliphatic and aromatic side chain protons (70%) are observable, in addition to Hα resonances, in a single experiment providing a complementary approach to the established proton-detected amide-based multidimensional solid-state NMR experiments for the study and resonance assignment of biosolid samples, in particular for aromatic side chain resonances.
Collapse
Affiliation(s)
- James Tolchard
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600, Pessac, France
| | - Manoj Kumar Pandey
- JEOL RESONANCE Inc., Musashino, Akishima, Tokyo, 196-8558, Japan
- RIKEN CLST-JEOL Collaboration Center, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, India
| | - Mélanie Berbon
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600, Pessac, France
| | - Abdelmajid Noubhani
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600, Pessac, France
| | - Sven J Saupe
- Institut de Biochimie et de Génétique Cellulaire, (UMR 5095 IBGC), CNRS, Université Bordeaux, 33077, Bordeaux, France
| | - Yusuke Nishiyama
- JEOL RESONANCE Inc., Musashino, Akishima, Tokyo, 196-8558, Japan.
- RIKEN CLST-JEOL Collaboration Center, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600, Pessac, France.
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600, Pessac, France.
| |
Collapse
|
25
|
Baker LA, Sinnige T, Schellenberger P, de Keyzer J, Siebert CA, Driessen AJM, Baldus M, Grünewald K. Combined 1H-Detected Solid-State NMR Spectroscopy and Electron Cryotomography to Study Membrane Proteins across Resolutions in Native Environments. Structure 2017; 26:161-170.e3. [PMID: 29249608 PMCID: PMC5758107 DOI: 10.1016/j.str.2017.11.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/02/2017] [Accepted: 11/15/2017] [Indexed: 11/15/2022]
Abstract
Membrane proteins remain challenging targets for structural biology, despite much effort, as their native environment is heterogeneous and complex. Most methods rely on detergents to extract membrane proteins from their native environment, but this removal can significantly alter the structure and function of these proteins. Here, we overcome these challenges with a hybrid method to study membrane proteins in their native membranes, combining high-resolution solid-state nuclear magnetic resonance spectroscopy and electron cryotomography using the same sample. Our method allows the structure and function of membrane proteins to be studied in their native environments, across different spatial and temporal resolutions, and the combination is more powerful than each technique individually. We use the method to demonstrate that the bacterial membrane protein YidC adopts a different conformation in native membranes and that substrate binding to YidC in these native membranes differs from purified and reconstituted systems. CryoET and ssNMR give complementary information about proteins in native membranes One sample can be prepared for both methods without the use of detergents Hybrid method shows differences between purified and native preparations of YidC Sample preparation reduces costs and time and suggests new strategy for assignment
Collapse
Affiliation(s)
- Lindsay A Baker
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands; Oxford Particle Imaging Centre, Division of Structural Biology, University of Oxford, The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK.
| | - Tessa Sinnige
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Pascale Schellenberger
- Oxford Particle Imaging Centre, Division of Structural Biology, University of Oxford, The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jeanine de Keyzer
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands; The Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 11, 9747 AG Groningen, the Netherlands
| | - C Alistair Siebert
- Oxford Particle Imaging Centre, Division of Structural Biology, University of Oxford, The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands; The Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 11, 9747 AG Groningen, the Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands.
| | - Kay Grünewald
- Oxford Particle Imaging Centre, Division of Structural Biology, University of Oxford, The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
26
|
Loquet A, Tolchard J, Berbon M, Martinez D, Habenstein B. Atomic Scale Structural Studies of Macromolecular Assemblies by Solid-state Nuclear Magnetic Resonance Spectroscopy. J Vis Exp 2017:55779. [PMID: 28994783 PMCID: PMC5752270 DOI: 10.3791/55779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Supramolecular protein assemblies play fundamental roles in biological processes ranging from host-pathogen interaction, viral infection to the propagation of neurodegenerative disorders. Such assemblies consist in multiple protein subunits organized in a non-covalent way to form large macromolecular objects that can execute a variety of cellular functions or cause detrimental consequences. Atomic insights into the assembly mechanisms and the functioning of those macromolecular assemblies remain often scarce since their inherent insolubility and non-crystallinity often drastically reduces the quality of the data obtained from most techniques used in structural biology, such as X-ray crystallography and solution Nuclear Magnetic Resonance (NMR). We here present magic-angle spinning solid-state NMR spectroscopy (SSNMR) as a powerful method to investigate structures of macromolecular assemblies at atomic resolution. SSNMR can reveal atomic details on the assembled complex without size and solubility limitations. The protocol presented here describes the essential steps from the production of 13C/15N isotope-labeled macromolecular protein assemblies to the acquisition of standard SSNMR spectra and their analysis and interpretation. As an example, we show the pipeline of a SSNMR structural analysis of a filamentous protein assembly.
Collapse
Affiliation(s)
- Antoine Loquet
- Institute of Chemistry, Biology of Membranes, Nanoobjects, UMR5248 CNRS, Université de Bordeaux;
| | - James Tolchard
- Institute of Chemistry, Biology of Membranes, Nanoobjects, UMR5248 CNRS, Université de Bordeaux
| | - Melanie Berbon
- Institute of Chemistry, Biology of Membranes, Nanoobjects, UMR5248 CNRS, Université de Bordeaux
| | - Denis Martinez
- Institute of Chemistry, Biology of Membranes, Nanoobjects, UMR5248 CNRS, Université de Bordeaux
| | - Birgit Habenstein
- Institute of Chemistry, Biology of Membranes, Nanoobjects, UMR5248 CNRS, Université de Bordeaux;
| |
Collapse
|
27
|
Mandal A, van der Wel PCA. MAS 1H NMR Probes Freezing Point Depression of Water and Liquid-Gel Phase Transitions in Liposomes. Biophys J 2017; 111:1965-1973. [PMID: 27806278 DOI: 10.1016/j.bpj.2016.09.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/09/2016] [Accepted: 09/21/2016] [Indexed: 10/20/2022] Open
Abstract
The lipid bilayer typical of hydrated biological membranes is characterized by a liquid-crystalline, highly dynamic state. Upon cooling or dehydration, these membranes undergo a cooperative transition to a rigidified, more-ordered, gel phase. This characteristic phase transition is of significant biological and biophysical interest, for instance in studies of freezing-tolerant organisms. Magic-angle-spinning (MAS) solid-state NMR (ssNMR) spectroscopy allows for the detection and characterization of the phase transitions over a wide temperature range. In this study we employ MAS 1H NMR to probe the phase transitions of both solvent molecules and different hydrated phospholipids, including tetraoleoyl cardiolipin (TOCL) and several phosphatidylcholine lipid species. The employed MAS NMR sample conditions cause a previously noted substantial reduction in the freezing point of the solvent phase. The effect on the solvent is caused by confinement of the aqueous solvent in the small and densely packed MAS NMR samples. In this study we report and examine how the freezing point depression also impacts the lipid phase transition, causing a ssNMR-observed reduction in the lipids' melting temperature (Tm). The molecular underpinnings of this phenomenon are discussed and compared with previous studies of membrane-associated water phases and the impact of membrane-protective cryoprotectants.
Collapse
Affiliation(s)
- Abhishek Mandal
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Patrick C A van der Wel
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
28
|
Auger M. Membrane solid-state NMR in Canada: A historical perspective. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1483-1489. [PMID: 28652206 DOI: 10.1016/j.bbapap.2017.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/17/2017] [Accepted: 06/21/2017] [Indexed: 11/18/2022]
Abstract
This manuscript presents an overview of more than 40years of membrane solid-state nuclear magnetic resonance (NMR) research in Canada. This technique is a method of choice for the study of the structure and dynamics of lipid bilayers; bilayer interactions with a variety of molecules such as membrane peptides, membrane proteins and drugs; and to investigate membrane peptide and protein structure, dynamics, and topology. Canada has a long tradition in this field of research, starting with pioneering work on natural and model membranes in the 1970s in a context of emergence of biophysics in the country. The 1980s and 1990s saw an emphasis on studying lipid structures and dynamics, and peptide-lipid and protein-lipid interactions. The study of bicelles began in the 1990s, and in the 2000s there was a rise in the study of membrane protein structures. Novel perspectives include using dynamic nuclear polarization (DNP) for membrane studies and using NMR in live cells. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
- Michèle Auger
- Département de chimie, PROTEO, CERMA, CQMF, Université Laval, Québec, Québec G1V 0A6, Canada.
| |
Collapse
|
29
|
Oligomeric Structure of Anabaena Sensory Rhodopsin in a Lipid Bilayer Environment by Combining Solid-State NMR and Long-range DEER Constraints. J Mol Biol 2017; 429:1903-1920. [DOI: 10.1016/j.jmb.2017.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/27/2017] [Accepted: 05/06/2017] [Indexed: 11/22/2022]
|
30
|
Abstract
Membrane proteins play a most important part in metabolism, signaling, cell motility, transport, development, and many other biochemical and biophysical processes which constitute fundamentals of life on the molecular level. Detailed understanding of these processes is necessary for the progress of life sciences and biomedical applications. Nanodiscs provide a new and powerful tool for a broad spectrum of biochemical and biophysical studies of membrane proteins and are commonly acknowledged as an optimal membrane mimetic system that provides control over size, composition, and specific functional modifications on the nanometer scale. In this review we attempted to combine a comprehensive list of various applications of nanodisc technology with systematic analysis of the most attractive features of this system and advantages provided by nanodiscs for structural and mechanistic studies of membrane proteins.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| | - Stephen G Sligar
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| |
Collapse
|
31
|
Structural basis of synaptic vesicle assembly promoted by α-synuclein. Nat Commun 2016; 7:12563. [PMID: 27640673 PMCID: PMC5031799 DOI: 10.1038/ncomms12563] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 07/14/2016] [Indexed: 02/02/2023] Open
Abstract
α-synuclein (αS) is an intrinsically disordered protein whose fibrillar aggregates are the major constituents of Lewy bodies in Parkinson's disease. Although the specific function of αS is still unclear, a general consensus is forming that it has a key role in regulating the process of neurotransmitter release, which is associated with the mediation of synaptic vesicle interactions and assembly. Here we report the analysis of wild-type αS and two mutational variants linked to familial Parkinson's disease to describe the structural basis of a molecular mechanism enabling αS to induce the clustering of synaptic vesicles. We provide support for this 'double-anchor' mechanism by rationally designing and experimentally testing a further mutational variant of αS engineered to promote stronger interactions between synaptic vesicles. Our results characterize the nature of the active conformations of αS that mediate the clustering of synaptic vesicles, and indicate their relevance in both functional and pathological contexts.
Collapse
|
32
|
Wang S, Ing C, Emami S, Jiang Y, Liang H, Pomès R, Brown LS, Ladizhansky V. Structure and Dynamics of Extracellular Loops in Human Aquaporin-1 from Solid-State NMR and Molecular Dynamics. J Phys Chem B 2016; 120:9887-902. [DOI: 10.1021/acs.jpcb.6b06731] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shenlin Wang
- Department
of Physics, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Christopher Ing
- Molecular
Structure and Function, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
- Department
of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Sanaz Emami
- Department
of Physics, University of Guelph, Guelph, ON, Canada N1G 2W1
- Biophysics
Interdepartmental Group, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Yunjiang Jiang
- Department
of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Hongjun Liang
- Department
of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| | - Régis Pomès
- Molecular
Structure and Function, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
- Department
of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Leonid S. Brown
- Department
of Physics, University of Guelph, Guelph, ON, Canada N1G 2W1
- Biophysics
Interdepartmental Group, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Vladimir Ladizhansky
- Department
of Physics, University of Guelph, Guelph, ON, Canada N1G 2W1
- Biophysics
Interdepartmental Group, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
33
|
Abstract
AbstractIncreasing evidence suggests that most proteins occur and function in complexes rather than as isolated entities when embedded in cellular membranes. Nuclear magnetic resonance (NMR) provides increasing possibilities to study structure, dynamics and assembly of such systems. In our review, we discuss recent methodological progress to study membrane–protein complexes (MPCs) by NMR, starting with expression, isotope-labeling and reconstitution protocols. We review approaches to deal with spectral complexity and limited spectral spectroscopic sensitivity that are usually encountered in NMR-based studies of MPCs. We highlight NMR applications in various classes of MPCs, including G-protein-coupled receptors, ion channels and retinal proteins and extend our discussion to protein–protein complexes that span entire cellular compartments or orchestrate processes such as protein transport across or within membranes. These examples demonstrate the growing potential of NMR-based studies of MPCs to provide critical insight into the energetics of protein–ligand and protein–protein interactions that underlie essential biological functions in cellular membranes.
Collapse
|
34
|
Gopinath T, Veglia G. Multiple acquisitions via sequential transfer of orphan spin polarization (MAeSTOSO): How far can we push residual spin polarization in solid-state NMR? JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 267:1-8. [PMID: 27039168 PMCID: PMC4862926 DOI: 10.1016/j.jmr.2016.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/22/2016] [Accepted: 03/07/2016] [Indexed: 05/05/2023]
Abstract
Conventional multidimensional magic angle spinning (MAS) solid-state NMR (ssNMR) experiments detect the signal arising from the decay of a single coherence transfer pathway (FID), resulting in one spectrum per acquisition time. Recently, we introduced two new strategies, namely DUMAS (DUal acquisition Magic Angle Spinning) and MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), that enable the simultaneous acquisitions of multidimensional ssNMR experiments using multiple coherence transfer pathways. Here, we combined the main elements of DUMAS and MEIOSIS to harness both orphan spin operators and residual polarization and increase the number of simultaneous acquisitions. We show that it is possible to acquire up to eight two-dimensional experiments using four acquisition periods per each scan. This new suite of pulse sequences, called MAeSTOSO for Multiple Acquisitions via Sequential Transfer of Orphan Spin pOlarization, relies on residual polarization of both (13)C and (15)N pathways and combines low- and high-sensitivity experiments into a single pulse sequence using one receiver and commercial ssNMR probes. The acquisition of multiple experiments does not affect the sensitivity of the main experiment; rather it recovers the lost coherences that are discarded, resulting in a significant gain in experimental time. Both merits and limitations of this approach are discussed.
Collapse
Affiliation(s)
- T Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States; Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
35
|
Tang M, Mao K, Li S, Zhuang J, Diallo K. Paramagnetic effects on the NMR spectra of isotropic bicelles with headgroup modified chelator lipids and metal ions. Phys Chem Chem Phys 2016; 18:15524-7. [PMID: 27240538 DOI: 10.1039/c6cp01443g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We characterized the paramagnetic effects of nine metal ions on NMR signals of isotropic bicelles with headgroup-modified lipids. We found that Mn(2+), Gd(3+) and Dy(3+) show evidence for influencing NMR signals on the surface more than inside and on the disc edge, providing distance information in the bilayers.
Collapse
Affiliation(s)
- Ming Tang
- Department of Chemistry, College of Staten Island - PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
36
|
Hu B, Yao ZP. Mobility of Proteins in Porous Substrates under Electrospray Ionization Conditions. Anal Chem 2016; 88:5585-9. [DOI: 10.1021/acs.analchem.6b00894] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Bin Hu
- State
Key Laboratory for Chirosciences, Food Safety and Technology Research
Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong
Kong SAR, China
- State
Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation)
and Shenzhen Key Laboratory
of Food Biological Safety Control, Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, 518057, China
| | - Zhong-Ping Yao
- State
Key Laboratory for Chirosciences, Food Safety and Technology Research
Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong
Kong SAR, China
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules (Yanbian University), Ministry of Education, Yanji, 133002, China
- State
Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation)
and Shenzhen Key Laboratory
of Food Biological Safety Control, Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, 518057, China
| |
Collapse
|
37
|
De Poli M, Zawodny W, Quinonero O, Lorch M, Webb SJ, Clayden J. Conformational photoswitching of a synthetic peptide foldamer bound within a phospholipid bilayer. Science 2016; 352:575-80. [PMID: 27033546 DOI: 10.1126/science.aad8352] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/24/2016] [Indexed: 12/17/2022]
Abstract
The dynamic properties of foldamers, synthetic molecules that mimic folded biomolecules, have mainly been explored in free solution. We report on the design, synthesis, and conformational behavior of photoresponsive foldamers bound in a phospholipid bilayer akin to a biological membrane phase. These molecules contain a chromophore, which can be switched between two configurations by different wavelengths of light, attached to a helical synthetic peptide that both promotes membrane insertion and communicates conformational change along its length. Light-induced structural changes in the chromophore are translated into global conformational changes, which are detected by monitoring the solid-state (19)F nuclear magnetic resonance signals of a remote fluorine-containing residue located 1 to 2 nanometers away. The behavior of the foldamers in the membrane phase is similar to that of analogous compounds in organic solvents.
Collapse
Affiliation(s)
- Matteo De Poli
- School of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Wojciech Zawodny
- School of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Ophélie Quinonero
- School of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Mark Lorch
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK
| | - Simon J Webb
- School of Chemistry, University of Manchester, Manchester M13 9PL, UK. Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.
| |
Collapse
|
38
|
Musial-Siwek M, Jaffee MB, Imperiali B. Probing Polytopic Membrane Protein-Substrate Interactions by Luminescence Resonance Energy Transfer. J Am Chem Soc 2016; 138:3806-12. [PMID: 26918528 DOI: 10.1021/jacs.5b13426] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Integral membrane proteins play essential roles in all living systems; however, major technical hurdles challenge analyses of this class of proteins. Biophysical approaches that provide structural information to complement and leverage experimentally determined and computationally predicted structures are urgently needed. Herein we present the application of luminescence resonance energy transfer (LRET) for investigating the interactions of the polytopic membrane-bound oligosaccharyl transferases (OTases) with partner substrates. Monomeric OTases, such as the PglBs from Campylobacter jejuni and Campylobacter lari, catalyze transfer of glycans from membrane-associated undecaprenol diphosphate-linked substrates to proteins in the bacterial periplasm. LRET-based distance measurements are enabled by the inclusion of an encoded N-terminal lanthanide-binding tag (LBT), and LRET between the luminescent (LBT)-Tb(3+) donor complex and fluorescently labeled peptide and glycan substrates provides discrete distance measurements across the span of the membrane. LRET-based measurements of detergent-solubilized PglB from C. lari allowed direct comparison with the distances based on the previously reported the C. lari PglB crystal structure, thereby validating the approach in a defined system. Distance measurements between peptide and glycan substrates and the C. jejuni PglB offer new experimental information on substrate binding to the related, but structurally uncharacterized, eukaryotic OTase.
Collapse
Affiliation(s)
- Monika Musial-Siwek
- Departments of Biology and Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Marcie B Jaffee
- Departments of Biology and Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Barbara Imperiali
- Departments of Biology and Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
39
|
Hilario E, Caulkins BG, Huang YMM, You W, Chang CEA, Mueller LJ, Dunn MF, Fan L. Visualizing the tunnel in tryptophan synthase with crystallography: Insights into a selective filter for accommodating indole and rejecting water. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1864:268-279. [PMID: 26708480 PMCID: PMC4732270 DOI: 10.1016/j.bbapap.2015.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/20/2015] [Accepted: 12/01/2015] [Indexed: 02/02/2023]
Abstract
Four new X-ray structures of tryptophan synthase (TS) crystallized with varying numbers of the amphipathic N-(4'-trifluoromethoxybenzoyl)-2-aminoethyl phosphate (F6) molecule are presented. These structures show one of the F6 ligands threaded into the tunnel from the β-site and reveal a distinct hydrophobic region. Over this expanse, the interactions between F6 and the tunnel are primarily nonpolar, while the F6 phosphoryl group fits into a polar pocket of the β-subunit active site. Further examination of TS structures reveals that one portion of the tunnel (T1) binds clusters of water molecules, whereas waters are not observed in the nonpolar F6 binding region of the tunnel (T2). MD simulation of another TS structure with an unobstructed tunnel also indicates the T2 region of the tunnel excludes water, consistent with a dewetted state that presents a significant barrier to the transfer of water into the closed β-site. We conclude that hydrophobic molecules can freely diffuse between the α- and β-sites via the tunnel, while water does not. We propose that exclusion of water serves to inhibit reaction of water with the α-aminoacrylate intermediate to form ammonium ion and pyruvate, a deleterious side reaction in the αβ-catalytic cycle. Finally, while most TS structures show βPhe280 partially blocking the tunnel between the α- and β-sites, new structures show an open tunnel, suggesting the flexibility of the βPhe280 side chain. Flexible docking studies and MD simulations confirm that the dynamic behavior of βPhe280 allows unhindered transfer of indole through the tunnel, therefore excluding a gating role for this residue.
Collapse
Affiliation(s)
- Eduardo Hilario
- Department of Biochemistry, University of California at Riverside, Riverside, CA 92521, USA
| | - Bethany G Caulkins
- Department of Chemistry, University of California at Riverside, Riverside, CA 92521, USA
| | - Yu-Ming M Huang
- Department of Chemistry, University of California at Riverside, Riverside, CA 92521, USA
| | - Wanli You
- Department of Chemistry, University of California at Riverside, Riverside, CA 92521, USA
| | - Chia-En A Chang
- Department of Chemistry, University of California at Riverside, Riverside, CA 92521, USA
| | - Leonard J Mueller
- Department of Chemistry, University of California at Riverside, Riverside, CA 92521, USA
| | - Michael F Dunn
- Department of Biochemistry, University of California at Riverside, Riverside, CA 92521, USA
| | - Li Fan
- Department of Biochemistry, University of California at Riverside, Riverside, CA 92521, USA
| |
Collapse
|
40
|
Salnikov ES, Aisenbrey C, Aussenac F, Ouari O, Sarrouj H, Reiter C, Tordo P, Engelke F, Bechinger B. Membrane topologies of the PGLa antimicrobial peptide and a transmembrane anchor sequence by Dynamic Nuclear Polarization/solid-state NMR spectroscopy. Sci Rep 2016; 6:20895. [PMID: 26876950 PMCID: PMC4753517 DOI: 10.1038/srep20895] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/11/2016] [Indexed: 12/23/2022] Open
Abstract
Dynamic Nuclear Polarization (DNP) has been introduced to overcome the sensitivity limitations of nuclear magnetic resonance (NMR) spectroscopy also of supported lipid bilayers. When investigated by solid-state NMR techniques the approach typically involves doping the samples with biradicals and their investigation at cryo-temperatures. Here we investigated the effects of temperature and membrane hydration on the topology of amphipathic and hydrophobic membrane polypeptides. Although the antimicrobial PGLa peptide in dimyristoyl phospholipids is particularly sensitive to topological alterations, the DNP conditions represent well its membrane alignment also found in bacterial lipids at ambient temperature. With a novel membrane-anchored biradical and purpose-built hardware a 17-fold enhancement in NMR signal intensity is obtained by DNP which is one of the best obtained for a truly static matrix-free system. Furthermore, a membrane anchor sequence encompassing 19 hydrophobic amino acid residues was investigated. Although at cryotemperatures the transmembrane domain adjusts it membrane tilt angle by about 10 degrees, the temperature dependence of two-dimensional separated field spectra show that freezing the motions can have beneficial effects for the structural analysis of this sequence.
Collapse
Affiliation(s)
| | - Christopher Aisenbrey
- University of Strasbourg/CNRS, UMR7177, Chemistry Institute, 67070 Strasbourg, France
| | - Fabien Aussenac
- Bruker BioSpin, 34, rue de l’Industrie, 67166 Wissembourg, France
| | - Olivier Ouari
- Aix-Marseille University, Institut de Chimie Radicalaire, UMR 7273, Faculté des Sciences, 13397 Marseille, Cédex 20, France
| | - Hiba Sarrouj
- University of Strasbourg/CNRS, UMR7177, Chemistry Institute, 67070 Strasbourg, France
- Bruker BioSpin, Silberstreifen, 76287 Rheinstetten, Germany
| | | | - Paul Tordo
- Aix-Marseille University, Institut de Chimie Radicalaire, UMR 7273, Faculté des Sciences, 13397 Marseille, Cédex 20, France
| | - Frank Engelke
- Bruker BioSpin, Silberstreifen, 76287 Rheinstetten, Germany
| | - Burkhard Bechinger
- University of Strasbourg/CNRS, UMR7177, Chemistry Institute, 67070 Strasbourg, France
| |
Collapse
|
41
|
Salnikov ES, Sarrouj H, Reiter C, Aisenbrey C, Purea A, Aussenac F, Ouari O, Tordo P, Fedotenko I, Engelke F, Bechinger B. Solid-State NMR/Dynamic Nuclear Polarization of Polypeptides in Planar Supported Lipid Bilayers. J Phys Chem B 2015; 119:14574-83. [PMID: 26487390 DOI: 10.1021/acs.jpcb.5b07341] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dynamic nuclear polarization has been developed to overcome the limitations of the inherently low signal intensity of NMR spectroscopy. This technique promises to be particularly useful for solid-state NMR spectroscopy where the signals are broadened over a larger frequency range and most investigations rely on recording low gamma nuclei. To extend the range of possible investigations, a triple-resonance flat-coil solid-state NMR probe is presented with microwave irradiation capacities allowing the investigation of static samples at temperatures of 100 K, including supported lipid bilayers. The probe performance allows for two-dimensional separated local field experiments with high-power Lee-Goldberg decoupling and cross-polarization under simultaneous irradiation from a gyrotron microwave generator. Efficient cooling of the sample turned out to be essential for best enhancements and line shape and necessitated the development of a dedicated cooling chamber. Furthermore, a new membrane-anchored biradical is presented, and the geometry of supported membranes was optimized not only for good membrane alignment, handling, stability, and filling factor of the coil but also for heat and microwave dissipation. Enhancement factors of 17-fold were obtained, and a two-dimensional PISEMA spectrum of a transmembrane helical peptide was obtained in less than 2 h.
Collapse
Affiliation(s)
- Evgeniy S Salnikov
- Institute of Chemistry, University of Strasbourg/CNRS, UMR7177 , 67070 Strasbourg, France
| | - Hiba Sarrouj
- Institute of Chemistry, University of Strasbourg/CNRS, UMR7177 , 67070 Strasbourg, France.,Bruker BioSpin, Silberstreifen, 76287 Rheinstetten, Germany
| | | | - Christopher Aisenbrey
- Institute of Chemistry, University of Strasbourg/CNRS, UMR7177 , 67070 Strasbourg, France
| | - Armin Purea
- Bruker BioSpin, Silberstreifen, 76287 Rheinstetten, Germany
| | - Fabien Aussenac
- Bruker BioSpin, 34, rue de l'Industrie, 67166 Wissembourg, France
| | - Olivier Ouari
- Aix Marseille Université, CNRS , Institut de Chimie Radicalaire, UMR 7273, 13013 Marseille, France
| | - Paul Tordo
- Aix Marseille Université, CNRS , Institut de Chimie Radicalaire, UMR 7273, 13013 Marseille, France
| | - Illya Fedotenko
- Aix Marseille Université, CNRS , Institut de Chimie Radicalaire, UMR 7273, 13013 Marseille, France
| | - Frank Engelke
- Bruker BioSpin, Silberstreifen, 76287 Rheinstetten, Germany
| | - Burkhard Bechinger
- Institute of Chemistry, University of Strasbourg/CNRS, UMR7177 , 67070 Strasbourg, France
| |
Collapse
|
42
|
Hellmich UA, Mönkemeyer L, Velamakanni S, van Veen HW, Glaubitz C. Effects of nucleotide binding to LmrA: A combined MAS-NMR and solution NMR study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3158-65. [PMID: 26449340 DOI: 10.1016/j.bbamem.2015.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/25/2015] [Accepted: 10/01/2015] [Indexed: 11/26/2022]
Abstract
ABC transporters are fascinating examples of fine-tuned molecular machines that use the energy from ATP hydrolysis to translocate a multitude of substrates across biological membranes. While structural details have emerged on many members of this large protein superfamily, a number of functional details are still under debate. High resolution structures yield valuable insights into protein function, but it is the combination of structural, functional and dynamic insights that facilitates a complete understanding of the workings of their complex molecular mechanisms. NMR is a technique well-suited to investigate proteins in atomic resolution while taking their dynamic properties into account. It thus nicely complements other structural techniques, such as X-ray crystallography, that have contributed high-resolution data to the architectural understanding of ABC transporters. Here, we describe the heterologous expression of LmrA, an ABC exporter from Lactococcus lactis, in Escherichia coli. This allows for more flexible isotope labeling for nuclear magnetic resonance (NMR) studies and the easy study of LmrA's multidrug resistance phenotype. We use a combination of solid-state magic angle spinning (MAS) on the reconstituted transporter and solution NMR on its isolated nucleotide binding domain to investigate consequences of nucleotide binding to LmrA. We find that nucleotide binding affects the protein globally, but that NMR is also able to pinpoint local dynamic effects to specific residues, such as the Walker A motif's conserved lysine residue.
Collapse
Affiliation(s)
- Ute A Hellmich
- Department of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), J.W. Goethe University, Frankfurt, Germany.
| | - Leonie Mönkemeyer
- Centre for Biomolecular Magnetic Resonance (BMRZ), J.W. Goethe University, Frankfurt, Germany; Department of Biophysical Chemistry, J.W. Goethe University, Frankfurt, Germany
| | | | | | - Clemens Glaubitz
- Centre for Biomolecular Magnetic Resonance (BMRZ), J.W. Goethe University, Frankfurt, Germany; Department of Biophysical Chemistry, J.W. Goethe University, Frankfurt, Germany; Cluster of Excellence Macromolecular Complexes Frankfurt, Germany.
| |
Collapse
|
43
|
Ravera E, Fragai M, Parigi G, Luchinat C. Differences in Dynamics between Crosslinked and Non-Crosslinked Hyaluronates Measured by using Fast Field-Cycling Relaxometry. Chemphyschem 2015; 16:2803-2809. [PMID: 26263906 DOI: 10.1002/cphc.201500446] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 11/11/2022]
Abstract
The dynamic properties of water molecules in gels containing linear and crosslinked hyaluronic acid polymers are investigated by using an integrated approach that includes relaxometry, solid-state NMR spectroscopy, and scanning electron microscopy. A model-free analysis of field-dependent nuclear relaxation is applied to obtain information on mobility and the population of different pools of water molecules in the gels. Differences between linear and crosslinked hyaluronic acid polymers are observed, indicating that crosslinking increases both the fraction and the correlation time of water molecules with slow dynamics.
Collapse
Affiliation(s)
- Enrico Ravera
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (Italy)
| | - Marco Fragai
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (Italy)
| | - Giacomo Parigi
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (Italy)
| | - Claudio Luchinat
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (Italy)
| |
Collapse
|
44
|
Trahey M, Li MJ, Kwon H, Woodahl EL, McClary WD, Atkins WM. Applications of Lipid Nanodiscs for the Study of Membrane Proteins by Surface Plasmon Resonance. ACTA ACUST UNITED AC 2015; 81:29.13.1-29.13.16. [PMID: 26237675 DOI: 10.1002/0471140864.ps2913s81] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Methods for the initial steps of surface plasmon resonance analysis of membrane proteins incorporated in lipid nanodiscs are described. Several types of Biacore sensor chips are available and require distinct strategies to immobilize proteonanodiscs on the chip surface. The procedures for immobilization on three of these chips (NTA, antibody coupled CM5, and L1) are described in this unit and results are demonstrated for a model system with cytochrome P4503A4 (CYP3A4) in nanodiscs binding to a polyclonal anti-CYP3A4 antibody. Advantages and disadvantages of each chip type are considered.
Collapse
Affiliation(s)
- Meg Trahey
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana.,These authors contributed equally to this work
| | - Mavis Jiarong Li
- Department of Medicinal Chemistry, University of Washington, Seattle Washington.,These authors contributed equally to this work
| | - Hyewon Kwon
- Department of Medicinal Chemistry, University of Washington, Seattle Washington
| | - Erica L Woodahl
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| | - Wynton D McClary
- Department of Medicinal Chemistry, University of Washington, Seattle Washington
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle Washington
| |
Collapse
|
45
|
Baker LA, Daniëls M, van der Cruijsen EAW, Folkers GE, Baldus M. Efficient cellular solid-state NMR of membrane proteins by targeted protein labeling. JOURNAL OF BIOMOLECULAR NMR 2015; 62:199-208. [PMID: 25956570 PMCID: PMC4451474 DOI: 10.1007/s10858-015-9936-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/23/2015] [Indexed: 05/20/2023]
Abstract
Solid-state NMR spectroscopy (ssNMR) has made significant progress towards the study of membrane proteins in their native cellular membranes. However, reduced spectroscopic sensitivity and high background signal levels can complicate these experiments. Here, we describe a method for ssNMR to specifically label a single protein by repressing endogenous protein expression with rifampicin. Our results demonstrate that treatment of E. coli with rifampicin during induction of recombinant membrane protein expression reduces background signals for different expression levels and improves sensitivity in cellular membrane samples. Further, the method reduces the amount of time and resources needed to produce membrane protein samples, enabling new strategies for studying challenging membrane proteins by ssNMR.
Collapse
Affiliation(s)
- Lindsay A. Baker
- />NMR Spectroscopy, Department of Chemistry, Faculty of Science, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- />Oxford Particle Imaging Centre, The Wellcome Trust Centre for Human Genetics, Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN UK
| | - Mark Daniëls
- />NMR Spectroscopy, Department of Chemistry, Faculty of Science, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Elwin A. W. van der Cruijsen
- />NMR Spectroscopy, Department of Chemistry, Faculty of Science, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Gert E. Folkers
- />NMR Spectroscopy, Department of Chemistry, Faculty of Science, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Marc Baldus
- />NMR Spectroscopy, Department of Chemistry, Faculty of Science, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
46
|
Baker LA, Folkers GE, Sinnige T, Houben K, Kaplan M, van der Cruijsen EAW, Baldus M. Magic-angle-spinning solid-state NMR of membrane proteins. Methods Enzymol 2015; 557:307-28. [PMID: 25950971 DOI: 10.1016/bs.mie.2014.12.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Solid-state NMR spectroscopy (ssNMR) provides increasing possibilities to examine membrane proteins in different molecular settings, ranging from synthetic bilayers to whole cells. This flexibility often enables ssNMR experiments to be directly correlated with membrane protein function. In this contribution, we discuss experimental aspects of such studies starting with protein expression and labeling, leading to membrane protein isolation or to membrane proteins in a cellular environment. We show that optimized procedures can depend on aspects such as the achieved levels of expression, the stability of the protein during purification or proper refolding. Dealing with native membrane samples, such as isolated cellular membranes, can alleviate or entirely remove such biochemical challenges. Subsequently, we outline ssNMR experiments that involve the use of magic-angle-spinning and can be used to study membrane protein structure and their functional aspects. We pay specific attention to spectroscopic issues such as sensitivity and spectral resolution. The latter aspect can be controlled using a combination of tailored preparation procedures with solid-state NMR experiments that simplify the spectral analysis using specific filtering and correlation methods. Such approaches have already provided access to obtain structural views of membrane proteins and study their function in lipid bilayers. Ongoing developments in sample preparation and NMR methodology, in particular in using hyperpolarization or proton-detection schemes, offer additional opportunities to study membrane proteins close to their cellular function. These considerations suggest a further increase in the potential of using solid-state NMR in the context of prokaryotic or eukaryotic membrane protein systems in the near future.
Collapse
Affiliation(s)
- Lindsay A Baker
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Gert E Folkers
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Tessa Sinnige
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Klaartje Houben
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Mohammed Kaplan
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Elwin A W van der Cruijsen
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
47
|
Gopinath T, Veglia G. Multiple acquisition of magic angle spinning solid-state NMR experiments using one receiver: application to microcrystalline and membrane protein preparations. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:143-53. [PMID: 25797011 PMCID: PMC4399235 DOI: 10.1016/j.jmr.2015.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/02/2015] [Accepted: 01/04/2015] [Indexed: 05/05/2023]
Abstract
Solid-state NMR spectroscopy of proteins is a notoriously low-throughput technique. Relatively low-sensitivity and poor resolution of protein samples require long acquisition times for multidimensional NMR experiments. To speed up data acquisition, we developed a family of experiments called Polarization Optimized Experiments (POE), in which we utilized the orphan spin operators that are discarded in classical multidimensional NMR experiments, recovering them to allow simultaneous acquisition of multiple 2D and 3D experiments, all while using conventional probes with spectrometers equipped with one receiver. POE allow the concatenation of multiple 2D or 3D pulse sequences into a single experiment, thus potentially combining all of the aforementioned advances, boosting the capability of ssNMR spectrometers at least two-fold without the addition of any hardware. In this perspective, we describe the first generation of POE, such as dual acquisition MAS (or DUMAS) methods, and then illustrate the evolution of these experiments into MEIOSIS, a method that enables the simultaneous acquisition of multiple 2D and 3D spectra. Using these new pulse schemes for the solid-state NMR investigation of biopolymers makes it possible to obtain sequential resonance assignments, as well as distance restraints, in about half the experimental time. While designed for acquisition of heteronuclei, these new experiments can be easily implemented for proton detection and coupled with other recent advancements, such as dynamic nuclear polarization (DNP), to improve signal to noise. Finally, we illustrate the application of these methods to microcrystalline protein preparations as well as single and multi-span membrane proteins reconstituted in lipid membranes.
Collapse
Affiliation(s)
- T Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States; Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
48
|
Jaroniec CP. Structural studies of proteins by paramagnetic solid-state NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:50-9. [PMID: 25797004 PMCID: PMC4371136 DOI: 10.1016/j.jmr.2014.12.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/17/2014] [Indexed: 05/03/2023]
Abstract
Paramagnetism-based nuclear pseudocontact shifts and spin relaxation enhancements contain a wealth of information in solid-state NMR spectra about electron-nucleus distances on the ∼20 Å length scale, far beyond that normally probed through measurements of nuclear dipolar couplings. Such data are especially vital in the context of structural studies of proteins and other biological molecules that suffer from a sparse number of experimentally-accessible atomic distances constraining their three-dimensional fold or intermolecular interactions. This perspective provides a brief overview of the recent developments and applications of paramagnetic magic-angle spinning NMR to biological systems, with primary focus on the investigations of metalloproteins and natively diamagnetic proteins modified with covalent paramagnetic tags.
Collapse
Affiliation(s)
- Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
49
|
Meirovitch E, Liang Z, Freed JH. Protein dynamics in the solid state from 2H NMR line shape analysis: a consistent perspective. J Phys Chem B 2015; 119:2857-68. [PMID: 25594631 DOI: 10.1021/jp511386b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Deuterium line shape analysis of CD3 groups has emerged as a particularly useful tool for studying microsecond-millisecond protein motions in the solid state. The models devised so far consist of several independently conceived simple jump-type motions. They are comprised of physical quantities encoded in their simplest form; improvements are only possible by adding yet another simple motion, thereby changing the model. The various treatments developed are case-specific; hence comparison among the different systems is not possible. Here we develop a new methodology for (2)H NMR line shape analysis free of these limitations. It is based on the microscopic-order-macroscopic-disorder (MOMD) approach. In MOMD motions are described by diffusion tensors, spatial restrictions by potentials/ordering tensors, and geometric features by relative tensor orientations. Jump-type motions are recovered in the limit of large orientational potentials. Model improvement is accomplished by monitoring the magnitude, symmetry, and orientation of the various tensors. The generality of MOMD makes possible comparison among different scenarios. CD3 line shapes from the Chicken Villin Headpiece Subdomain and the Streptomyces Subtilisin Inhibitor are used as experimental examples. All of these spectra are reproduced by using rhombic local potentials constrained for simplicity to be given by the L = 2 spherical harmonics, and by axial diffusion tensors. Potential strength and rhombicity are found to be ca. 2-3 k(B)T. The diffusion tensor is tilted at 120° from the C-CD3 axis. The perpendicular (parallel) correlation times for local motion are 0.1-1.0 ms (3.3-30 μs). Activation energies in the 1.1-8.0 kcal/mol range are estimated. Future prospects include extension to the (2)H relaxation limit, application to the (15)N and (13)C NMR nuclei, and accounting for collective motions and anisotropic media.
Collapse
Affiliation(s)
- Eva Meirovitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat-Gan 52900, Israel
| | | | | |
Collapse
|
50
|
H. DeLuca S, L. DeLuca S, Leaver-Fay A, Meiler J. RosettaTMH: a method for membrane protein structure elucidation combining EPR distance restraints with assembly of transmembrane helices. AIMS BIOPHYSICS 2015. [DOI: 10.3934/biophy.2016.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|