1
|
Lee Upton S, Tay JW, Schwartz DK, Sousa MC. Similarly slow diffusion of BAM and SecYEG complexes in live E. coli cells observed with 3D spt-PALM. Biophys J 2023; 122:4382-4394. [PMID: 37853695 PMCID: PMC10698321 DOI: 10.1016/j.bpj.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/05/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023] Open
Abstract
The β-barrel assembly machinery (BAM) complex is responsible for inserting outer membrane proteins (OMPs) into the Escherichia coli outer membrane. The SecYEG translocon inserts inner membrane proteins into the inner membrane and translocates both soluble proteins and nascent OMPs into the periplasm. Recent reports describe Sec possibly playing a direct role in OMP biogenesis through interactions with the soluble polypeptide transport-associated (POTRA) domains of BamA (the central OMP component of BAM). Here we probe the diffusion behavior of these protein complexes using photoactivatable super-resolution localization microscopy and single-particle tracking in live E. coli cells of BAM and SecYEG components BamA and SecE and compare them to other outer and inner membrane proteins. To accurately measure trajectories on the highly curved cell surface, three-dimensional tracking was performed using double-helix point-spread function microscopy. All proteins tested exhibit two diffusive modes characterized by "slow" and "fast" diffusion coefficients. We implement a diffusion coefficient analysis as a function of the measurement lag time to separate positional uncertainty from true mobility. The resulting true diffusion coefficients of the slow and fast modes showed a complete immobility of full-length BamA constructs in the time frame of the experiment, whereas the OMP OmpLA displayed a slow diffusion consistent with the high viscosity of the outer membrane. The periplasmic POTRA domains of BamA were found to anchor BAM to other cellular structures and render it immobile. However, deletion of individual distal POTRA domains resulted in increased mobility, suggesting that these domains are required for the full set of cellular interactions. SecE diffusion was much slower than that of the inner membrane protein PgpB and was more like OMPs and BamA. Strikingly, SecE diffused faster upon POTRA domain deletion. These results are consistent with the existence of a BAM-SecYEG trans-periplasmic assembly in live E. coli cells.
Collapse
Affiliation(s)
- Stephen Lee Upton
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | - Jian Wei Tay
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Daniel Keith Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado
| | | |
Collapse
|
2
|
Baquero F, Martínez JL, Sánchez A, Fernández-de-Bobadilla MD, San-Millán A, Rodríguez-Beltrán J. Bacterial Subcellular Architecture, Structural Epistasis, and Antibiotic Resistance. BIOLOGY 2023; 12:640. [PMID: 37237454 PMCID: PMC10215332 DOI: 10.3390/biology12050640] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/08/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Epistasis refers to the way in which genetic interactions between some genetic loci affect phenotypes and fitness. In this study, we propose the concept of "structural epistasis" to emphasize the role of the variable physical interactions between molecules located in particular spaces inside the bacterial cell in the emergence of novel phenotypes. The architecture of the bacterial cell (typically Gram-negative), which consists of concentrical layers of membranes, particles, and molecules with differing configurations and densities (from the outer membrane to the nucleoid) determines and is in turn determined by the cell shape and size, depending on the growth phases, exposure to toxic conditions, stress responses, and the bacterial environment. Antibiotics change the bacterial cell's internal molecular topology, producing unexpected interactions among molecules. In contrast, changes in shape and size may alter antibiotic action. The mechanisms of antibiotic resistance (and their vectors, as mobile genetic elements) also influence molecular connectivity in the bacterial cell and can produce unexpected phenotypes, influencing the action of other antimicrobial agents.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain; (M.D.F.-d.-B.); (J.R.-B.)
- CIBER en Epidemiología y Salud Pública (CIBERESP), 28034 Madrid, Spain
| | - José-Luis Martínez
- Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain; (J.-L.M.); (A.S.); (A.S.-M.)
| | - Alvaro Sánchez
- Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain; (J.-L.M.); (A.S.); (A.S.-M.)
| | - Miguel D. Fernández-de-Bobadilla
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain; (M.D.F.-d.-B.); (J.R.-B.)
- CIBER en Enfermedades Infecciosas (CIBERINFECT), 28034 Madrid, Spain
| | - Alvaro San-Millán
- Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain; (J.-L.M.); (A.S.); (A.S.-M.)
- CIBER en Enfermedades Infecciosas (CIBERINFECT), 28034 Madrid, Spain
| | - Jerónimo Rodríguez-Beltrán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain; (M.D.F.-d.-B.); (J.R.-B.)
- CIBER en Enfermedades Infecciosas (CIBERINFECT), 28034 Madrid, Spain
| |
Collapse
|
3
|
Webby MN, Oluwole AO, Pedebos C, Inns PG, Olerinyova A, Prakaash D, Housden NG, Benn G, Sun D, Hoogenboom BW, Kukura P, Mohammed S, Robinson CV, Khalid S, Kleanthous C. Lipids mediate supramolecular outer membrane protein assembly in bacteria. SCIENCE ADVANCES 2022; 8:eadc9566. [PMID: 36322653 PMCID: PMC9629720 DOI: 10.1126/sciadv.adc9566] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
β Barrel outer membrane proteins (OMPs) cluster into supramolecular assemblies that give function to the outer membrane (OM) of Gram-negative bacteria. How such assemblies form is unknown. Here, through photoactivatable cross-linking into the Escherichia coli OM, coupled with simulations, and biochemical and biophysical analysis, we uncover the basis for OMP clustering in vivo. OMPs are typically surrounded by an annular shell of asymmetric lipids that mediate higher-order complexes with neighboring OMPs. OMP assemblies center on the abundant porins OmpF and OmpC, against which low-abundance monomeric β barrels, such as TonB-dependent transporters, are packed. Our study reveals OMP-lipid-OMP complexes to be the basic unit of supramolecular OMP assembly that, by extending across the entire cell surface, couples the requisite multifunctionality of the OM to its stability and impermeability.
Collapse
Affiliation(s)
- Melissa N. Webby
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| | - Abraham O. Oluwole
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
- The Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QZ, UK
| | - Conrado Pedebos
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| | - Patrick G. Inns
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| | - Anna Olerinyova
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Dheeraj Prakaash
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| | - Nicholas G. Housden
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| | - Georgina Benn
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Dawei Sun
- Structural Biology, Genentech Inc., South San Francisco, USA
| | - Bart W. Hoogenboom
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
- Department of Physics and Astronomy, University College London, WC1E 6BT London, UK
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Shabaz Mohammed
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3QZ, UK
- Mechanistic Proteomics, Rosalind Franklin Institute, Harwell Campus, Didcot OX11 OFA, UK
| | - Carol V. Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
- The Kavli Institute for Nanoscience Discovery, South Parks Road, Oxford OX1 3QZ, UK
| | - Syma Khalid
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| | - Colin Kleanthous
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
4
|
Dynamic interplay between the periplasmic chaperone SurA and the BAM complex in outer membrane protein folding. Commun Biol 2022; 5:560. [PMID: 35676411 PMCID: PMC9177699 DOI: 10.1038/s42003-022-03502-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022] Open
Abstract
Correct folding of outer membrane proteins (OMPs) into the outer membrane of Gram-negative bacteria depends on delivery of unfolded OMPs to the β-barrel assembly machinery (BAM). How unfolded substrates are presented to BAM remains elusive, but the major OMP chaperone SurA is proposed to play a key role. Here, we have used hydrogen deuterium exchange mass spectrometry (HDX-MS), crosslinking, in vitro folding and binding assays and computational modelling to show that the core domain of SurA and one of its two PPIase domains are key to the SurA-BAM interaction and are required for maximal catalysis of OMP folding. We reveal that binding causes changes in BAM and SurA conformation and/or dynamics distal to the sites of binding, including at the BamA β1-β16 seam. We propose a model for OMP biogenesis in which SurA plays a crucial role in OMP delivery and primes BAM to accept substrates for folding. Interaction of the outer membrane protein (OMP) chaperone SurA and the OMP folding catalyst BAM results in changes in the conformational ensembles of both species, suggesting a mechanism for delivery of OMPs to BAM in Gram-negative bacteria.
Collapse
|
5
|
Mamou G, Corona F, Cohen-Khait R, Housden NG, Yeung V, Sun D, Sridhar P, Pazos M, Knowles TJ, Kleanthous C, Vollmer W. Peptidoglycan maturation controls outer membrane protein assembly. Nature 2022; 606:953-959. [PMID: 35705811 PMCID: PMC9242858 DOI: 10.1038/s41586-022-04834-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/05/2022] [Indexed: 11/12/2022]
Abstract
Linkages between the outer membrane of Gram-negative bacteria and the peptidoglycan layer are crucial for the maintenance of cellular integrity and enable survival in challenging environments1–5. The function of the outer membrane is dependent on outer membrane proteins (OMPs), which are inserted into the membrane by the β-barrel assembly machine6,7 (BAM). Growing Escherichia coli cells segregate old OMPs towards the poles by a process known as binary partitioning, the basis of which is unknown8. Here we demonstrate that peptidoglycan underpins the spatiotemporal organization of OMPs. Mature, tetrapeptide-rich peptidoglycan binds to BAM components and suppresses OMP foldase activity. Nascent peptidoglycan, which is enriched in pentapeptides and concentrated at septa9, associates with BAM poorly and has little effect on its activity, leading to preferential insertion of OMPs at division sites. The synchronization of OMP biogenesis with cell wall growth results in the binary partitioning of OMPs as cells divide. Our study reveals that Gram-negative bacteria coordinate the assembly of two major cell envelope layers by rendering OMP biogenesis responsive to peptidoglycan maturation, a potential vulnerability that could be exploited in future antibiotic design. Peptidoglycan stem peptides in the Gram-negative bacterial cell wall regulate the insertion of essential outer membrane proteins, thus representing a potential target for antibiotic design.
Collapse
Affiliation(s)
- Gideon Mamou
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, UK
| | - Federico Corona
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.,Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ruth Cohen-Khait
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, UK
| | - Nicholas G Housden
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, UK
| | - Vivian Yeung
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, UK
| | - Dawei Sun
- Structural Biology, Genentech, South San Francisco, CA, USA
| | - Pooja Sridhar
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Manuel Pazos
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.,Department of Molecular Biology, Center of Molecular Biology 'Severo Ochoa' (UAM-CSIC), Autonomous University of Madrid, Madrid, Spain
| | | | - Colin Kleanthous
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, UK.
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
6
|
Single molecule tracking of bacterial cell surface cytochromes reveals dynamics that impact long-distance electron transport. Proc Natl Acad Sci U S A 2022; 119:e2119964119. [PMID: 35503913 PMCID: PMC9171617 DOI: 10.1073/pnas.2119964119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiheme cytochromes in Shewanella oneidensis MR-1 transport electrons across the cell wall, in a process called extracellular electron transfer. These electron conduits can also enable electron transport along and between cells. While the underlying mechanism is thought to involve a combination of electron hopping and lateral diffusion of cytochromes along membranes, these diffusive dynamics have never been observed in vivo. Here, we observe the mobility of quantum dot-labeled cytochromes on living cell surfaces and membrane nanowires, quantify their diffusion with single-particle tracking techniques, and simulate the contribution of these dynamics to electron transport. This work reveals the impact of redox molecule dynamics on bacterial electron transport, with implications for understanding and harnessing this process in the environment and bioelectronics. Using a series of multiheme cytochromes, the metal-reducing bacterium Shewanella oneidensis MR-1 can perform extracellular electron transfer (EET) to respire redox-active surfaces, including minerals and electrodes outside the cell. While the role of multiheme cytochromes in transporting electrons across the cell wall is well established, these cytochromes were also recently found to facilitate long-distance (micrometer-scale) redox conduction along outer membranes and across multiple cells bridging electrodes. Recent studies proposed that long-distance conduction arises from the interplay of electron hopping and cytochrome diffusion, which allows collisions and electron exchange between cytochromes along membranes. However, the diffusive dynamics of the multiheme cytochromes have never been observed or quantified in vivo, making it difficult to assess their hypothesized contribution to the collision-exchange mechanism. Here, we use quantum dot labeling, total internal reflection fluorescence microscopy, and single-particle tracking to quantify the lateral diffusive dynamics of the outer membrane-associated decaheme cytochromes MtrC and OmcA, two key components of EET in S. oneidensis. We observe confined diffusion behavior for both quantum dot-labeled MtrC and OmcA along cell surfaces (diffusion coefficients DMtrC = 0.0192 ± 0.0018 µm2/s, DOmcA = 0.0125 ± 0.0024 µm2/s) and the membrane extensions thought to function as bacterial nanowires. We find that these dynamics can trace a path for electron transport via overlap of cytochrome trajectories, consistent with the long-distance conduction mechanism. The measured dynamics inform kinetic Monte Carlo simulations that combine direct electron hopping and redox molecule diffusion, revealing significant electron transport rates along cells and membrane nanowires.
Collapse
|
7
|
Sun J, Rutherford ST, Silhavy TJ, Huang KC. Physical properties of the bacterial outer membrane. Nat Rev Microbiol 2022; 20:236-248. [PMID: 34732874 PMCID: PMC8934262 DOI: 10.1038/s41579-021-00638-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 11/09/2022]
Abstract
It has long been appreciated that the Gram-negative outer membrane acts as a permeability barrier, but recent studies have uncovered a more expansive and versatile role for the outer membrane in cellular physiology and viability. Owing to recent developments in microfluidics and microscopy, the structural, rheological and mechanical properties of the outer membrane are becoming apparent across multiple scales. In this Review, we discuss experimental and computational studies that have revealed key molecular factors and interactions that give rise to the spatial organization, limited diffusivity and stress-bearing capacity of the outer membrane. These physical properties suggest broad connections between cellular structure and physiology, and we explore future prospects for further elucidation of the implications of outer membrane construction for cellular fitness and survival.
Collapse
Affiliation(s)
- Jiawei Sun
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Steven T. Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA 94080, USA,To whom correspondence should be addressed: , ,
| | - Thomas J. Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,To whom correspondence should be addressed: , ,
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, USA. .,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
8
|
Budiardjo SJ, Stevens JJ, Calkins AL, Ikujuni AP, Wimalasena VK, Firlar E, Case DA, Biteen JS, Kaelber JT, Slusky JSG. Colicin E1 opens its hinge to plug TolC. eLife 2022; 11:73297. [PMID: 35199644 PMCID: PMC9020818 DOI: 10.7554/elife.73297] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/21/2022] [Indexed: 12/02/2022] Open
Abstract
The double membrane architecture of Gram-negative bacteria forms a barrier that is impermeable to most extracellular threats. Bacteriocin proteins evolved to exploit the accessible, surface-exposed proteins embedded in the outer membrane to deliver cytotoxic cargo. Colicin E1 is a bacteriocin produced by, and lethal to, Escherichia coli that hijacks the outer membrane proteins (OMPs) TolC and BtuB to enter the cell. Here, we capture the colicin E1 translocation domain inside its membrane receptor, TolC, by high-resolution cryo-electron microscopy to obtain the first reported structure of a bacteriocin bound to TolC. Colicin E1 binds stably to TolC as an open hinge through the TolC pore—an architectural rearrangement from colicin E1’s unbound conformation. This binding is stable in live E. coli cells as indicated by single-molecule fluorescence microscopy. Finally, colicin E1 fragments binding to TolC plug the channel, inhibiting its native efflux function as an antibiotic efflux pump, and heightening susceptibility to three antibiotic classes. In addition to demonstrating that these protein fragments are useful starting points for developing novel antibiotic potentiators, this method could be expanded to other colicins to inhibit other OMP functions. Bacteria are constantly warring with each other for space and resources. As a result, they have developed a range of molecular weapons to poison, damage or disable other cells. For instance, bacteriocins are proteins that can latch onto structures at the surface of enemy bacteria and push toxins through their outer membrane. Bacteria are increasingly resistant to antibiotics, representing a growing concern for modern healthcare. One way that they are able to survive is by using ‘efflux pumps’ studded through their external membranes to expel harmful drugs before these can cause damage. Budiardjo et al. wanted to test whether bacteriocins could interfere with this defence mechanism by blocking efflux pumps. Bacteriocins are usually formed of binding elements (which recognise specific target proteins) and of a ‘killer tail’ that can stab the cell. Experiments showed that the binding parts of a bacteriocin could effectively ‘plug’ efflux pumps in Escherichia coli bacteria: high-resolution molecular microscopy revealed how the bacteriocin fragment binds to the pump, while fluorescent markers showed that it attached to the surface of E. coli and stopped the efflux pumps from working. As a result, lower amounts of antibiotics were necessary to kill the bacteria when bacteriocins were present. The work by Budiardjo et al. could lead to new ways to combat bacteria that will reduce the need for current antibiotics. In the future, bacteriocins could also be harnessed to target other proteins than efflux pumps, allowing scientists to manipulate a range of bacterial processes.
Collapse
Affiliation(s)
- S Jimmy Budiardjo
- Center for Computational Biology, University of Kansas, Lawrence, United States
| | - Jacqueline J Stevens
- Department of Molecular Biosciences, University of Kansas, Lawrence, United States
| | - Anna L Calkins
- Department of Chemistry, University of Michigan, Ann Arbor, United States
| | - Ayotunde P Ikujuni
- Department of Molecular Biosciences, University of Kansas, Lawrence, United States
| | | | - Emre Firlar
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, United States
| | - David A Case
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, United States
| | - Julie S Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, United States
| | - Jason T Kaelber
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, United States
| | - Joanna S G Slusky
- Center for Computational Biology, University of Kansas, Lawrence, United States
| |
Collapse
|
9
|
Phase separation in the outer membrane of Escherichia coli. Proc Natl Acad Sci U S A 2021; 118:2112237118. [PMID: 34716276 DOI: 10.1073/pnas.2112237118] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022] Open
Abstract
Gram-negative bacteria are surrounded by a protective outer membrane (OM) with phospholipids in its inner leaflet and lipopolysaccharides (LPS) in its outer leaflet. The OM is also populated with many β-barrel outer-membrane proteins (OMPs), some of which have been shown to cluster into supramolecular assemblies. However, it remains unknown how abundant OMPs are organized across the entire bacterial surface and how this relates to the lipids in the membrane. Here, we reveal how the OM is organized from molecular to cellular length scales, using atomic force microscopy to visualize the OM of live bacteria, including engineered Escherichia coli strains and complemented by specific labeling of abundant OMPs. We find that a predominant OMP in the E. coli OM, the porin OmpF, forms a near-static network across the surface, which is interspersed with barren patches of LPS that grow and merge with other patches during cell elongation. Embedded within the porin network is OmpA, which forms noncovalent interactions to the underlying cell wall. When the OM is destabilized by mislocalization of phospholipids to the outer leaflet, a new phase appears, correlating with bacterial sensitivity to harsh environments. We conclude that the OM is a mosaic of phase-separated LPS-rich and OMP-rich regions, the maintenance of which is essential to the integrity of the membrane and hence to the lifestyle of a gram-negative bacterium.
Collapse
|
10
|
Abstract
Colicins are protein antibiotics deployed by Escherichia coli to eliminate competing strains. Colicins frequently exploit outer membrane (OM) nutrient transporters to penetrate the selectively permeable bacterial cell envelope. Here, by applying live-cell fluorescence imaging, we were able to monitor the entry of the pore-forming toxin colicin B (ColB) into E. coli and localize it within the periplasm. We further demonstrate that single-stranded DNA coupled to ColB can also be transported to the periplasm, emphasizing that the import routes of colicins can be exploited to carry large cargo molecules into bacteria. Moreover, we characterize the molecular mechanism of ColB association with its OM receptor FepA by applying a combination of photoactivated cross-linking, mass spectrometry, and structural modeling. We demonstrate that complex formation is coincident with large-scale conformational changes in the colicin. Thereafter, active transport of ColB through FepA involves the colicin taking the place of the N-terminal half of the plug domain that normally occludes this iron transporter. IMPORTANCE Decades of excessive use of readily available antibiotics has generated a global problem of antibiotic resistance and, hence, an urgent need for novel antibiotic solutions. Bacteriocins are protein-based antibiotics produced by bacteria to eliminate closely related competing bacterial strains. Bacteriocin toxins have evolved to bypass the complex cell envelope in order to kill bacterial cells. Here, we uncover the cellular penetration mechanism of a well-known but poorly understood bacteriocin called colicin B that is active against Escherichia coli. Moreover, we demonstrate that the colicin B-import pathway can be exploited to deliver conjugated DNA cargo into bacterial cells. Our work leads to a better understanding of the way bacteriocins, as potential alternative antibiotics, execute their mode of action as well as highlighting how they might even be exploited in the genomic manipulation of Gram-negative bacteria.
Collapse
|
11
|
Shearer J, Marzinek JK, Bond PJ, Khalid S. Molecular dynamics simulations of bacterial outer membrane lipid extraction: Adequate sampling? J Chem Phys 2021; 153:044122. [PMID: 32752683 DOI: 10.1063/5.0017734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The outer membrane of Gram-negative bacteria is almost exclusively composed of lipopolysaccharide in its outer leaflet, whereas the inner leaflet contains a mixture of phospholipids. Lipopolysaccharide diffuses at least an order of magnitude slower than phospholipids, which can cause issues for molecular dynamics simulations in terms of adequate sampling. Here, we test a number of simulation protocols for their ability to achieve convergence with reasonable computational effort using the MARTINI coarse-grained force-field. This is tested in the context both of potential of mean force (PMF) calculations for lipid extraction from membranes and of lateral mixing within the membrane phase. We find that decoupling the cations that cross-link the lipopolysaccharide headgroups from the extracted lipid during PMF calculations is the best approach to achieve convergence comparable to that for phospholipid extraction. We also show that lateral lipopolysaccharide mixing/sorting is very slow and not readily addressable even with Hamiltonian replica exchange. We discuss why more sorting may be unrealistic for the short (microseconds) timescales we simulate and provide an outlook for future studies of lipopolysaccharide-containing membranes.
Collapse
Affiliation(s)
- Jonathan Shearer
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Jan K Marzinek
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (ASTAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (ASTAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore
| | - Syma Khalid
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
12
|
Cao P, Wall D. The Fluidity of the Bacterial Outer Membrane Is Species Specific: Bacterial Lifestyles and the Emergence of a Fluid Outer Membrane. Bioessays 2020; 42:e1900246. [PMID: 32363627 PMCID: PMC7392792 DOI: 10.1002/bies.201900246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/23/2020] [Indexed: 01/17/2023]
Abstract
The outer membrane (OM) is an essential barrier that guards Gram-negative bacteria from diverse environmental insults. Besides functioning as a chemical gatekeeper, the OM also contributes towards the strength and stiffness of cells and allows them to sustain mechanical stress. Largely influenced by studies of Escherichia coli, the OM is viewed as a rigid barrier where OM proteins and lipopolysaccharides display restricted mobility. Here the discussion is extended to other bacterial species, with a focus on Myxococcus xanthus. In contrast to the rigid OM paradigm, myxobacteria possess a relatively fluid OM. It is concluded that the fluidity of the OM varies across environmental species, which is likely linked to their evolution and adaptation to specific ecological niches. Importantly, a fluid OM can endow bacteria with distinct functions for cell-cell and cell-environment interactions.
Collapse
Affiliation(s)
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, 1000 E University Avenue, Laramie, WY, 82071, USA
| |
Collapse
|
13
|
Horne JE, Brockwell DJ, Radford SE. Role of the lipid bilayer in outer membrane protein folding in Gram-negative bacteria. J Biol Chem 2020; 295:10340-10367. [PMID: 32499369 PMCID: PMC7383365 DOI: 10.1074/jbc.rev120.011473] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/03/2020] [Indexed: 01/09/2023] Open
Abstract
β-Barrel outer membrane proteins (OMPs) represent the major proteinaceous component of the outer membrane (OM) of Gram-negative bacteria. These proteins perform key roles in cell structure and morphology, nutrient acquisition, colonization and invasion, and protection against external toxic threats such as antibiotics. To become functional, OMPs must fold and insert into a crowded and asymmetric OM that lacks much freely accessible lipid. This feat is accomplished in the absence of an external energy source and is thought to be driven by the high thermodynamic stability of folded OMPs in the OM. With such a stable fold, the challenge that bacteria face in assembling OMPs into the OM is how to overcome the initial energy barrier of membrane insertion. In this review, we highlight the roles of the lipid environment and the OM in modulating the OMP-folding landscape and discuss the factors that guide folding in vitro and in vivo We particularly focus on the composition, architecture, and physical properties of the OM and how an understanding of the folding properties of OMPs in vitro can help explain the challenges they encounter during folding in vivo Current models of OMP biogenesis in the cellular environment are still in flux, but the stakes for improving the accuracy of these models are high. OMP folding is an essential process in all Gram-negative bacteria, and considering the looming crisis of widespread microbial drug resistance it is an attractive target. To bring down this vital OMP-supported barrier to antibiotics, we must first understand how bacterial cells build it.
Collapse
Affiliation(s)
- Jim E Horne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
14
|
Liu D, Yang Z, Zhang L, Wei M, Lu Y. Cell-free biology using remote-controlled digital microfluidics for individual droplet control. RSC Adv 2020; 10:26972-26981. [PMID: 35515808 PMCID: PMC9055536 DOI: 10.1039/d0ra04588h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022] Open
Abstract
Cell-free biology for diverse protein expression and biodetection in vitro has developed rapidly in recent years because of its more open and controllable reaction environment. However, complex liquid handling schemes are troublesome, especially when scaling up to perform multiple different reactions simultaneously. Digital microfluidic (DMF) technology can operate a single droplet by controlling its movement, mixing, separation, and some other actions, and is a suitable scaffold for cell-free reactions with higher efficiency. In this paper, a commercial DMF board, OpenDrop, was used, and DMF technology via remote real-time control inspired by the Internet of Things (IoT) was developed for detecting glucose enzyme catalytic cell-free reactions and verifying the feasibility of programmed cell-free protein expression. A cell-free biological reaction process which can be remote-controlled visually with excellent interactivity, controllability and flexibility was achieved. As proof-of-concept research, this work proposed a new control interface for single-drop cell-free biological reactions. It is much like the "droplet operation desktop" concept, used for remote-controllable operations and distributions of cell-free biology for efficient biological screening and protein synthesis in complex reaction networks, with expanded operability and less artificial interference.
Collapse
Affiliation(s)
- Dong Liu
- Department of Chemical Engineering, Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University Beijing 100084 China
| | - Zhenghuan Yang
- Department of Chemical Engineering, Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University Beijing 100084 China
| | - Luyang Zhang
- Department of Chemical Engineering, Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University Beijing 100084 China
| | - Minglun Wei
- Department of Chemical Engineering, Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University Beijing 100084 China
| | - Yuan Lu
- Department of Chemical Engineering, Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University Beijing 100084 China
| |
Collapse
|
15
|
Toward Organism-scale Structural Biology: S-layer Reined in by Bacterial LPS. Trends Biochem Sci 2020; 45:549-551. [DOI: 10.1016/j.tibs.2020.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/03/2020] [Accepted: 03/12/2020] [Indexed: 12/29/2022]
|
16
|
Nyenhuis DA, Nilaweera TD, Niblo JK, Nguyen NQ, DuBay KH, Cafiso DS. Evidence for the Supramolecular Organization of a Bacterial Outer-Membrane Protein from In Vivo Pulse Electron Paramagnetic Resonance Spectroscopy. J Am Chem Soc 2020; 142:10715-10722. [PMID: 32452197 DOI: 10.1021/jacs.0c01754] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the outer membrane of Gram-negative bacteria, membrane proteins are thought to be organized into domains or islands that play a role in the segregation, movement, and turnover of membrane components. However, there is presently limited information on the structure of these domains or the molecular interactions that mediate domain formation. In the present work, the Escherichia coli outer membrane vitamin B12 transporter, BtuB, was spin-labeled, and double electron-electron resonance was used to measure the distances between proteins in intact cells. These data together with Monte Carlo simulations provide evidence for the presence of specific intermolecular contacts between BtuB monomers that could drive the formation of string-like oligomers. Moreover, the EPR data provide evidence for the location of the interacting interfaces and indicate that lipopolysaccharide mediates the contacts between BtuB monomers.
Collapse
|
17
|
Carballo-Pacheco M, Nicholson MD, Lilja EE, Allen RJ, Waclaw B. Phenotypic delay in the evolution of bacterial antibiotic resistance: Mechanistic models and their implications. PLoS Comput Biol 2020; 16:e1007930. [PMID: 32469859 PMCID: PMC7307788 DOI: 10.1371/journal.pcbi.1007930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/22/2020] [Accepted: 05/06/2020] [Indexed: 11/19/2022] Open
Abstract
Phenotypic delay-the time delay between genetic mutation and expression of the corresponding phenotype-is generally neglected in evolutionary models, yet recent work suggests that it may be more common than previously assumed. Here, we use computer simulations and theory to investigate the significance of phenotypic delay for the evolution of bacterial resistance to antibiotics. We consider three mechanisms which could potentially cause phenotypic delay: effective polyploidy, dilution of antibiotic-sensitive molecules and accumulation of resistance-enhancing molecules. We find that the accumulation of resistant molecules is relevant only within a narrow parameter range, but both the dilution of sensitive molecules and effective polyploidy can cause phenotypic delay over a wide range of parameters. We further investigate whether these mechanisms could affect population survival under drug treatment and thereby explain observed discrepancies in mutation rates estimated by Luria-Delbrück fluctuation tests. While the effective polyploidy mechanism does not affect population survival, the dilution of sensitive molecules leads both to decreased probability of survival under drug treatment and underestimation of mutation rates in fluctuation tests. The dilution mechanism also changes the shape of the Luria-Delbrück distribution of mutant numbers, and we show that this modified distribution provides an improved fit to previously published experimental data.
Collapse
Affiliation(s)
| | - Michael D. Nicholson
- School of Physics and Astronomy, The University of Edinburgh, Edinburgh, United Kingdom
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Elin E. Lilja
- School of Physics and Astronomy, The University of Edinburgh, Edinburgh, United Kingdom
| | - Rosalind J. Allen
- School of Physics and Astronomy, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Synthetic and Systems Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Bartlomiej Waclaw
- School of Physics and Astronomy, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Synthetic and Systems Biology, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Establishment of a Protein Concentration Gradient in the Outer Membrane Requires Two Diffusion-Limiting Mechanisms. J Bacteriol 2019; 201:JB.00177-19. [PMID: 31209077 DOI: 10.1128/jb.00177-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/12/2019] [Indexed: 11/20/2022] Open
Abstract
OmpA-like proteins are involved in the stabilization of the outer membrane, resistance to osmotic stress, and pathogenesis. In Caulobacter crescentus, OmpA2 forms a physiologically relevant concentration gradient that forms by an uncharacterized mechanism, in which the gradient orientation depends on the position of the gene locus. This suggests that OmpA2 is synthesized and translocated to the periplasm close to the position of the gene and that the gradient forms by diffusion of the protein from this point. To further understand how the OmpA2 gradient is established, we determined the localization and mobility of the full protein and of its two structural domains. We show that OmpA2 does not diffuse and that both domains are required for gradient formation. The C-terminal domain binds tightly to the cell wall and the immobility of the full protein depends on the binding of this domain to the peptidoglycan; in contrast, the N-terminal membrane β-barrel diffuses slowly. Our results support a model in which once OmpA2 is translocated to the periplasm, the N-terminal membrane β-barrel is required for an initial fast restriction of diffusion until the position of the protein is stabilized by the binding of the C-terminal domain to the cell wall. The implications of these results on outer membrane protein diffusion and organization are discussed.IMPORTANCE Protein concentration gradients play a relevant role in the organization of the bacterial cell. The Caulobacter crescentus protein OmpA2 forms an outer membrane polar concentration gradient. To understand the molecular mechanism that determines the formation of this gradient, we characterized the mobility and localization of the full protein and of its two structural domains an integral outer membrane β-barrel and a periplasmic peptidoglycan binding domain. Each domain has a different role in the formation of the OmpA2 gradient, which occurs in two steps. We also show that the OmpA2 outer membrane β-barrel can diffuse, which is in contrast to what has been reported previously for several integral outer membrane proteins in Escherichia coli, suggesting a different organization of the outer membrane proteins.
Collapse
|
19
|
Atanaskovic I, Kleanthous C. Tools and Approaches for Dissecting Protein Bacteriocin Import in Gram-Negative Bacteria. Front Microbiol 2019; 10:646. [PMID: 31001227 PMCID: PMC6455109 DOI: 10.3389/fmicb.2019.00646] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/14/2019] [Indexed: 12/30/2022] Open
Abstract
Bacteriocins of Gram-negative bacteria are typically multi-domain proteins that target and kill bacteria of the same or closely related species. There is increasing interest in protein bacteriocin import; from a fundamental perspective to understand how folded proteins are imported into bacteria and from an applications perspective as species-specific antibiotics to combat multidrug resistant bacteria. In order to translocate across the cell envelope and cause cell death, protein bacteriocins hijack nutrient uptake pathways. Their import is energized by parasitizing intermembrane protein complexes coupled to the proton motive force, which delivers a toxic domain into the cell. A plethora of genetic, structural, biochemical, and biophysical methods have been applied to find cell envelope components involved in bacteriocin import since their discovery almost a century ago. Here, we review the various approaches that now exist for investigating how protein bacteriocins translocate into Gram-negative bacteria and highlight areas of research that will need methodological innovations to fully understand this process. We also highlight recent studies demonstrating how bacteriocins can be used to probe organization and architecture of the Gram-negative cell envelope itself.
Collapse
Affiliation(s)
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Vassen V, Valotteau C, Feuillie C, Formosa-Dague C, Dufrêne YF, De Bolle X. Localized incorporation of outer membrane components in the pathogen Brucella abortus. EMBO J 2019; 38:e100323. [PMID: 30635335 PMCID: PMC6396147 DOI: 10.15252/embj.2018100323] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 12/21/2022] Open
Abstract
The zoonotic pathogen Brucella abortus is part of the Rhizobiales, which are alpha-proteobacteria displaying unipolar growth. Here, we show that this bacterium exhibits heterogeneity in its outer membrane composition, with clusters of rough lipopolysaccharide co-localizing with the essential outer membrane porin Omp2b, which is proposed to allow facilitated diffusion of solutes through the porin. We also show that the major outer membrane protein Omp25 and peptidoglycan are incorporated at the new pole and the division site, the expected growth sites. Interestingly, lipopolysaccharide is also inserted at the same growth sites. The absence of long-range diffusion of main components of the outer membrane could explain the apparent immobility of the Omp2b clusters, as well as unipolar and mid-cell localizations of newly incorporated outer membrane proteins and lipopolysaccharide. Unipolar growth and limited mobility of surface structures also suggest that new surface variants could arise in a few generations without the need of diluting pre-existing surface antigens.
Collapse
Affiliation(s)
- Victoria Vassen
- Research Unit in Biology of Microorganisms (URBM), Narilis University of Namur (UNamur), Namur, Belgium
| | - Claire Valotteau
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Cécile Feuillie
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Cécile Formosa-Dague
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavre, Belgium
| | - Xavier De Bolle
- Research Unit in Biology of Microorganisms (URBM), Narilis University of Namur (UNamur), Namur, Belgium
| |
Collapse
|
21
|
Sharp C, Boinett C, Cain A, Housden NG, Kumar S, Turner K, Parkhill J, Kleanthous C. O-Antigen-Dependent Colicin Insensitivity of Uropathogenic Escherichia coli. J Bacteriol 2019; 201:e00545-18. [PMID: 30510143 PMCID: PMC6351738 DOI: 10.1128/jb.00545-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/05/2018] [Indexed: 11/20/2022] Open
Abstract
The outer membrane of Gram-negative bacteria presents a significant barrier for molecules entering the cell. Nevertheless, colicins, which are antimicrobial proteins secreted by Escherichia coli, can target other E. coli cells by binding to cell surface receptor proteins and activating their import, resulting in cell death. Previous studies have documented high rates of nonspecific resistance (insensitivity) of various E. coli strains toward colicins that is independent of colicin-specific immunity and is instead associated with lipopolysaccharide (LPS) in the outer membrane. This observation poses a contradiction: why do E. coli strains have colicin-expressing plasmids, which are energetically costly to retain, if cells around them are likely to be naturally insensitive to the colicin they produce? Here, using a combination of transposon sequencing and phenotypic microarrays, we show that colicin insensitivity of uropathogenic E. coli sequence type 131 (ST131) is dependent on the production of its O-antigen but that minor changes in growth conditions render the organism sensitive toward colicins. The reintroduction of O-antigen into E. coli K-12 demonstrated that it is the density of O-antigen that is the dominant factor governing colicin insensitivity. We also show, by microscopy of fluorescently labelled colicins, that growth conditions affect the degree of occlusion by O-antigen of outer membrane receptors but not the clustered organization of receptors. The result of our study demonstrate that environmental conditions play a critical role in sensitizing E. coli toward colicins and that O-antigen in LPS is central to this role.IMPORTANCEEscherichia coli infections can be a major health burden, especially with the organism becoming increasingly resistant to "last-resort" antibiotics such as carbapenems. Although colicins are potent narrow-spectrum antimicrobials with potential as future antibiotics, high levels of naturally occurring colicin insensitivity have been documented which could limit their efficacy. We identify O-antigen-dependent colicin insensitivity in a clinically relevant uropathogenic E. coli strain and show that this insensitivity can be circumvented by minor changes to growth conditions. The results of our study suggest that colicin insensitivity among E. coli organisms has been greatly overestimated, and as a consequence, colicins could in fact be effective species-specific antimicrobials targeting pathogenic E. coli such as uropathogenic E. coli (UPEC).
Collapse
Affiliation(s)
- Connor Sharp
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Amy Cain
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Macquarie University, Sydney, Australia
| | - Nicholas G Housden
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Sandip Kumar
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Keith Turner
- Quadram Institute Bioscience, Norwich, United Kingdom
| | | | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
González-Rivera C, Khara P, Awad D, Patel R, Li YG, Bogisch M, Christie PJ. Two pKM101-encoded proteins, the pilus-tip protein TraC and Pep, assemble on the Escherichia coli cell surface as adhesins required for efficient conjugative DNA transfer. Mol Microbiol 2018; 111:96-117. [PMID: 30264928 DOI: 10.1111/mmi.14141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 01/10/2023]
Abstract
Mobile genetic elements (MGEs) encode type IV secretion systems (T4SSs) known as conjugation machines for their transmission between bacterial cells. Conjugation machines are composed of an envelope-spanning translocation channel, and those functioning in Gram-negative species additionally elaborate an extracellular pilus to initiate donor-recipient cell contacts. We report that pKM101, a self-transmissible MGE functioning in the Enterobacteriaceae, has evolved a second target cell attachment mechanism. Two pKM101-encoded proteins, the pilus-tip adhesin TraC and a protein termed Pep, are exported to the cell surface where they interact and also form higher order complexes appearing as distinct foci or patches around the cell envelope. Surface-displayed TraC and Pep are required for an efficient conjugative transfer, 'extracellular complementation' potentially involving intercellular protein transfer, and activation of a Pseudomonas aeruginosa type VI secretion system. Both proteins are also required for bacteriophage PRD1 infection. TraC and Pep are exported across the outer membrane by a mechanism potentially involving the β-barrel assembly machinery. The pKM101 T4SS, thus, deploys alternative routing pathways for the delivery of TraC to the pilus tip or both TraC and Pep to the cell surface. We propose that T4SS-encoded, pilus-independent attachment mechanisms maximize the probability of MGE propagation and might be widespread among this translocation superfamily.
Collapse
Affiliation(s)
- Christian González-Rivera
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Pratick Khara
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Dominik Awad
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Roosheel Patel
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | | | - Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| |
Collapse
|
23
|
Arguijo-Hernández ES, Hernandez-Sanchez J, Briones-Peña SJ, Oviedo N, Mendoza-Hernández G, Guarneros G, Kameyama L. Cor interacts with outer membrane proteins to exclude FhuA-dependent phages. Arch Virol 2018; 163:2959-2969. [PMID: 30043202 DOI: 10.1007/s00705-018-3954-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 05/16/2018] [Indexed: 12/01/2022]
Abstract
Superinfection exclusion (Sie) of FhuA-dependent phages is carried out by Cor in the Escherichia coli mEp167 prophage lysogenic strain. In this work, we present evidence that Cor is an outer membrane (OM) lipoprotein that requires the participation of additional outer membrane proteins (OMPs) to exclude FhuA-dependent phages. Two Cor species of ~13 and ~8.5 kDa, corresponding to the preprolipoprotein/prolipoprotein and lipoprotein, were observed by Western blot. Cell mutants for CorC17F, CorA18D and CorA57E lost the Sie phenotype for FhuA-dependent phages. A copurification affinity binding assay combined with LC_ESI_MS/MS showed that Cor bound to OMPs: OmpA, OmpC, OmpF, OmpW, LamB, and Slp. Interestingly, Sie for FhuA-dependent phages was reduced on Cor overexpressing FhuA+ mutant strains, where ompA, ompC, ompF, ompW, lamB, fhuE, genes were knocked out. The exclusion was restored when these strains were supplemented with plasmids expressing these genes. Sie was not lost in other Cor overexpressing FhuA+ null mutant strains JW3938(btuB-), JW5100(tolB-), JW3474(slp-). These results indicate that Cor interacts and requires some OMPs to exclude FhuA-dependent phages.
Collapse
Affiliation(s)
- Emma S Arguijo-Hernández
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07360, Mexico City (CDMX), México
| | - Javier Hernandez-Sanchez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07360, Mexico City (CDMX), México
| | - Saida J Briones-Peña
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07360, Mexico City (CDMX), México
| | - Norma Oviedo
- Unidad de Investigación Médica en Inmunología e Infectología, Centro Médico Nacional la Raza, IMSS, 02990, Mexico City (CDMX), México
| | - Guillermo Mendoza-Hernández
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico City (CDMX), México
| | - Gabriel Guarneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07360, Mexico City (CDMX), México
| | - Luis Kameyama
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 07360, Mexico City (CDMX), México.
| |
Collapse
|
24
|
Chavent M, Duncan AL, Rassam P, Birkholz O, Hélie J, Reddy T, Beliaev D, Hambly B, Piehler J, Kleanthous C, Sansom MSP. How nanoscale protein interactions determine the mesoscale dynamic organisation of bacterial outer membrane proteins. Nat Commun 2018; 9:2846. [PMID: 30030429 PMCID: PMC6054660 DOI: 10.1038/s41467-018-05255-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 06/15/2018] [Indexed: 01/07/2023] Open
Abstract
The spatiotemporal organisation of membranes is often characterised by the formation of large protein clusters. In Escherichia coli, outer membrane protein (OMP) clustering leads to OMP islands, the formation of which underpins OMP turnover and drives organisation across the cell envelope. Modelling how OMP islands form in order to understand their origin and outer membrane behaviour has been confounded by the inherent difficulties of simulating large numbers of OMPs over meaningful timescales. Here, we overcome these problems by training a mesoscale model incorporating thousands of OMPs on coarse-grained molecular dynamics simulations. We achieve simulations over timescales that allow direct comparison to experimental data of OMP behaviour. We show that specific interaction surfaces between OMPs are key to the formation of OMP clusters, that OMP clusters present a mesh of moving barriers that confine newly inserted proteins within islands, and that mesoscale simulations recapitulate the restricted diffusion characteristics of OMPs. In Escherichia coli, outer membrane protein (OMP) cluster and form islands, but the origin and behaviour of those clusters remains poorly understood. Here authors use coarse grained molecular dynamics simulation and show that their mesoscale simulations recapitulate the restricted diffusion characteristics of OMPs.
Collapse
Affiliation(s)
- Matthieu Chavent
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 5RJ, UK.,Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 Route de Narbonne, Toulouse, 31400, France
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 5RJ, UK
| | - Patrice Rassam
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 5RJ, UK.,Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, 67401, Illkirch, France
| | - Oliver Birkholz
- Department of Biology, University of Osnabrück, Barbarastraße 11, 49076, Osnabrück, Germany
| | - Jean Hélie
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 5RJ, UK.,SEMMLE, Blue Boar Court, 9 Alfred St, Oxford, OX1 4EH, UK
| | - Tyler Reddy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 5RJ, UK.,Theoretical Biology and Biophysics, T-6, Los Alamos National Laboratory, Los Alamos, NM, 87525, USA
| | - Dmitry Beliaev
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter (550), Woodstock Road, Oxford, OX2 6GG, UK
| | - Ben Hambly
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter (550), Woodstock Road, Oxford, OX2 6GG, UK
| | - Jacob Piehler
- Department of Biology, University of Osnabrück, Barbarastraße 11, 49076, Osnabrück, Germany
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 5RJ, UK.
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 5RJ, UK.
| |
Collapse
|
25
|
Tuson HH, Foley MH, Koropatkin NM, Biteen JS. The Starch Utilization System Assembles around Stationary Starch-Binding Proteins. Biophys J 2018; 115:242-250. [PMID: 29338841 PMCID: PMC6051301 DOI: 10.1016/j.bpj.2017.12.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/02/2017] [Accepted: 12/11/2017] [Indexed: 02/08/2023] Open
Abstract
Bacteroides thetaiotaomicron (Bt) is a prominent member of the human gut microbiota with an extensive capacity for glycan harvest. This bacterium expresses a five-protein complex in the outer membrane, called the starch utilization system (Sus), which binds, degrades, and imports starch into the cell. Sus is a model system for the many glycan-targeting polysaccharide utilization loci found in Bt and other members of the Bacteroidetes phylum. Our previous work has shown that SusG, a lipidated amylase in the outer membrane, explores the entire cell surface but diffuses more slowly as it interacts with starch. Here, we use a combination of single-molecule tracking, super-resolution imaging, reverse genetics, and proteomics to show that SusE and SusF, two proteins that bind starch, are immobile on the cell surface even when other members of the system are knocked out and under multiple different growth conditions. This observation suggests a new paradigm for protein complex formation: binding proteins form immobile complexes that transiently associate with a mobile enzyme partner.
Collapse
Affiliation(s)
- Hannah H Tuson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Matthew H Foley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan.
| | - Julie S Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
26
|
Birkholz O, Burns JR, Richter CP, Psathaki OE, Howorka S, Piehler J. Multi-functional DNA nanostructures that puncture and remodel lipid membranes into hybrid materials. Nat Commun 2018; 9:1521. [PMID: 29670084 PMCID: PMC5906680 DOI: 10.1038/s41467-018-02905-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 01/08/2018] [Indexed: 02/06/2023] Open
Abstract
Synthetically replicating key biological processes requires the ability to puncture lipid bilayer membranes and to remodel their shape. Recently developed artificial DNA nanopores are one possible synthetic route due to their ease of fabrication. However, an unresolved fundamental question is how DNA nanopores bind to and dynamically interact with lipid bilayers. Here we use single-molecule fluorescence microscopy to establish that DNA nanopores carrying cholesterol anchors insert via a two-step mechanism into membranes. Nanopores are furthermore shown to locally cluster and remodel membranes into nanoscale protrusions. Most strikingly, the DNA pores can function as cytoskeletal components by stabilizing autonomously formed lipid nanotubes. The combination of membrane puncturing and remodeling activity can be attributed to the DNA pores’ tunable transition between two orientations to either span or co-align with the lipid bilayer. This insight is expected to catalyze the development of future functional nanodevices relevant in synthetic biology and nanobiotechnology. DNA nanopores can span lipid bilayers but how they interact with lipids is not known. Here the authors establish at single-molecule level the insertion mechanism and show that DNA nanopores can locally cluster and remodel membranes, and stabilize autonomously formed lipid nanotubes.
Collapse
|
27
|
Asymmetric adhesion of rod-shaped bacteria controls microcolony morphogenesis. Nat Commun 2018; 9:1120. [PMID: 29549338 PMCID: PMC5856753 DOI: 10.1038/s41467-018-03446-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 02/14/2018] [Indexed: 12/29/2022] Open
Abstract
Surface colonization underpins microbial ecology on terrestrial environments. Although factors that mediate bacteria–substrate adhesion have been extensively studied, their spatiotemporal dynamics during the establishment of microcolonies remains largely unexplored. Here, we use laser ablation and force microscopy to monitor single-cell adhesion during the course of microcolony formation. We find that adhesion forces of the rod-shaped bacteria Escherichia coli and Pseudomonas aeruginosa are polar. This asymmetry induces mechanical tension, and drives daughter cell rearrangements, which eventually determine the shape of the microcolonies. Informed by experimental data, we develop a quantitative model of microcolony morphogenesis that enables the prediction of bacterial adhesion strength from simple time-lapse measurements. Our results demonstrate how patterns of surface colonization derive from the spatial distribution of adhesive factors on the cell envelope. It is unclear how cell adhesion and elongation coordinate during formation of bacterial microcolonies. Here, Duvernoy et al. monitor microcolony formation in rod-shaped bacteria, and show that patterns of surface colonization derive from the spatial distribution of adhesive factors on the cell envelope.
Collapse
|
28
|
Rassam P, Long KR, Kaminska R, Williams DJ, Papadakos G, Baumann CG, Kleanthous C. Intermembrane crosstalk drives inner-membrane protein organization in Escherichia coli. Nat Commun 2018. [PMID: 29540681 PMCID: PMC5852019 DOI: 10.1038/s41467-018-03521-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gram-negative bacteria depend on energised protein complexes that connect the two membranes of the cell envelope. However, β-barrel outer-membrane proteins (OMPs) and α-helical inner-membrane proteins (IMPs) display quite different organisation. OMPs cluster into islands that restrict their lateral mobility, while IMPs generally diffuse throughout the cell. Here, using live cell imaging of Escherichia coli, we demonstrate that when transient, energy-dependent transmembrane connections are formed, IMPs become subjugated by the inherent organisation of OMPs and that such connections impact IMP function. We show that while establishing a translocon for import, the colicin ColE9 sequesters the IMPs of the proton motive force (PMF)-linked Tol-Pal complex into islands mirroring those of colicin-bound OMPs. Through this imposed organisation, the bacteriocin subverts the outer-membrane stabilising role of Tol-Pal, blocking its recruitment to cell division sites and slowing membrane constriction. The ordering of IMPs by OMPs via an energised inter-membrane bridge represents an emerging functional paradigm in cell envelope biology.
Collapse
Affiliation(s)
- Patrice Rassam
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.,Laboratoire de Bioimagerie et Pathologie, UMR 7021, CNRS, Université de Strasbourg, Faculté de pharmacie, 74 Route du Rhin, 67401, Illkirch, France
| | - Kathleen R Long
- Department of Biology, University of York, York, YO10 5DD, UK.,Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Renata Kaminska
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - David J Williams
- Department of Biology, University of York, York, YO10 5DD, UK.,Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Grigorios Papadakos
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.,Division of Neurobiology, The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | | | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
29
|
Hussain S, Bernstein HD. The Bam complex catalyzes efficient insertion of bacterial outer membrane proteins into membrane vesicles of variable lipid composition. J Biol Chem 2018; 293:2959-2973. [PMID: 29311257 DOI: 10.1074/jbc.ra117.000349] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/06/2017] [Indexed: 12/29/2022] Open
Abstract
Most proteins that reside in the bacterial outer membrane (OM) have a distinctive "β-barrel" architecture, but the assembly of these proteins is poorly understood. The spontaneous assembly of OM proteins (OMPs) into pure lipid vesicles has been studied extensively but often requires non-physiological conditions and time scales and is strongly influenced by properties of the lipid bilayer, including surface charge, thickness, and fluidity. Furthermore, the membrane insertion of OMPs in vivo is catalyzed by a heterooligomer called the β-barrel assembly machinery (Bam) complex. To determine the role of lipids in the assembly of OMPs under more physiological conditions, we exploited an assay in which the Bam complex mediates their insertion into membrane vesicles. After reconstituting the Bam complex into vesicles that contain a variety of different synthetic lipids, we found that two model OMPs, EspP and OmpA, folded efficiently regardless of the lipid composition. Most notably, both proteins folded into membranes composed of a gel-phase lipid that mimics the rigid bacterial OM. Interestingly, we found that EspP, OmpA, and another model protein (OmpG) folded at significantly different rates and that an α-helix embedded inside the EspP β-barrel accelerates folding. Our results show that the Bam complex largely overcomes effects that lipids exert on OMP assembly and suggest that specific interactions between the Bam complex and an OMP influence its rate of folding.
Collapse
Affiliation(s)
- Sunyia Hussain
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0538
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0538.
| |
Collapse
|
30
|
Schiffrin B, Brockwell DJ, Radford SE. Outer membrane protein folding from an energy landscape perspective. BMC Biol 2017; 15:123. [PMID: 29268734 PMCID: PMC5740924 DOI: 10.1186/s12915-017-0464-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding.
Collapse
Affiliation(s)
- Bob Schiffrin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
31
|
Glew MD, Veith PD, Chen D, Gorasia DG, Peng B, Reynolds EC. PorV is an Outer Membrane Shuttle Protein for the Type IX Secretion System. Sci Rep 2017; 7:8790. [PMID: 28821836 PMCID: PMC5562754 DOI: 10.1038/s41598-017-09412-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/24/2017] [Indexed: 01/20/2023] Open
Abstract
Porphyromonas gingivalis is a keystone pathogen associated with chronic periodontitis. Major virulence factors named gingipains (cysteine proteinases, RgpA, RgpB and Kgp) are secreted via the Type IX Secretion System (T9SS). These, together with approximately 30 other proteins, are secreted to the cell surface and anchored to the outer membrane by covalent modification to anionic lipopolysaccharide (A-LPS) via the novel Gram negative sortase, PorU. PorU is localised on the cell surface and cleaves the C-terminal domain signal (CTD) of T9SS substrates and conjugates their new C-termini to A-LPS. A 440 kDa-attachment complex was identified in the wild-type (WT) comprising of PorU:PorV:PorQ:PorZ. In mutant strains, sub-complexes comprising PorU:PorV or PorQ:PorZ were also identified at smaller native sizes suggesting that PorU and PorZ are anchored to the cell surface via interaction with the PorV and PorQ outer membrane proteins, respectively. Analysis of porU mutants and a CTD cleavage mutant revealed accumulation of immature T9SS substrates in a PorV-bound form. Quantitative label-free proteomics of WT whole cell lysates estimated that the proportion of secretion channels:attachment complexes:free PorV:T9SS substrates was 1:6:110:2000 supporting a role for PorV as a shuttle protein delivering secreted proteins to the attachment complex for CTD signal cleavage and A-LPS modification.
Collapse
Affiliation(s)
- Michelle D Glew
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Paul D Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Dina Chen
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Dhana G Gorasia
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Ben Peng
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Eric C Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
32
|
Fleming PJ, Patel DS, Wu EL, Qi Y, Yeom MS, Sousa MC, Fleming KG, Im W. BamA POTRA Domain Interacts with a Native Lipid Membrane Surface. Biophys J 2017; 110:2698-2709. [PMID: 27332128 DOI: 10.1016/j.bpj.2016.05.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/18/2016] [Accepted: 05/09/2016] [Indexed: 11/28/2022] Open
Abstract
The outer membrane of Gram-negative bacteria is an asymmetric membrane with lipopolysaccharides on the external leaflet and phospholipids on the periplasmic leaflet. This outer membrane contains mainly β-barrel transmembrane proteins and lipidated periplasmic proteins (lipoproteins). The multisubunit protein β-barrel assembly machine (BAM) catalyzes the insertion and folding of the β-barrel proteins into this membrane. In Escherichia coli, the BAM complex consists of five subunits, a core transmembrane β-barrel with a long periplasmic domain (BamA) and four lipoproteins (BamB/C/D/E). The BamA periplasmic domain is composed of five globular subdomains in tandem called POTRA motifs that are key to BAM complex formation and interaction with the substrate β-barrel proteins. The BAM complex is believed to undergo conformational cycling while facilitating insertion of client proteins into the outer membrane. Reports describing variable conformations and dynamics of the periplasmic POTRA domain have been published. Therefore, elucidation of the conformational dynamics of the POTRA domain in full-length BamA is important to understand the function of this molecular complex. Using molecular dynamics simulations, we present evidence that the conformational flexibility of the POTRA domain is modulated by binding to the periplasmic surface of a native lipid membrane. Furthermore, membrane binding of the POTRA domain is compatible with both BamB and BamD binding, suggesting that conformational selection of different POTRA domain conformations may be involved in the mechanism of BAM-facilitated insertion of outer membrane β-barrel proteins.
Collapse
Affiliation(s)
- Patrick J Fleming
- T. C. Jenkins Department of Biophysics, John Hopkins University, Baltimore, Maryland
| | - Dhilon S Patel
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, Lawrence, Kansas
| | - Emilia L Wu
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, Lawrence, Kansas
| | - Yifei Qi
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, Lawrence, Kansas
| | - Min Sun Yeom
- Korean Institute of Science and Technology Information, Yuseong-gu, Daejeon, Korea
| | - Marcelo Carlos Sousa
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | - Karen G Fleming
- T. C. Jenkins Department of Biophysics, John Hopkins University, Baltimore, Maryland
| | - Wonpil Im
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, Lawrence, Kansas.
| |
Collapse
|
33
|
Bergmiller T, Andersson AMC, Tomasek K, Balleza E, Kiviet DJ, Hauschild R, Tkačik G, Guet CC. Biased partitioning of the multidrug efflux pump AcrAB-TolC underlies long-lived phenotypic heterogeneity. Science 2017; 356:311-315. [DOI: 10.1126/science.aaf4762] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 09/30/2016] [Accepted: 03/13/2017] [Indexed: 12/22/2022]
|
34
|
Abstract
AbstractIncreasing evidence suggests that most proteins occur and function in complexes rather than as isolated entities when embedded in cellular membranes. Nuclear magnetic resonance (NMR) provides increasing possibilities to study structure, dynamics and assembly of such systems. In our review, we discuss recent methodological progress to study membrane–protein complexes (MPCs) by NMR, starting with expression, isotope-labeling and reconstitution protocols. We review approaches to deal with spectral complexity and limited spectral spectroscopic sensitivity that are usually encountered in NMR-based studies of MPCs. We highlight NMR applications in various classes of MPCs, including G-protein-coupled receptors, ion channels and retinal proteins and extend our discussion to protein–protein complexes that span entire cellular compartments or orchestrate processes such as protein transport across or within membranes. These examples demonstrate the growing potential of NMR-based studies of MPCs to provide critical insight into the energetics of protein–ligand and protein–protein interactions that underlie essential biological functions in cellular membranes.
Collapse
|
35
|
Plummer AM, Fleming KG. From Chaperones to the Membrane with a BAM! Trends Biochem Sci 2016; 41:872-882. [PMID: 27450425 DOI: 10.1016/j.tibs.2016.06.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/13/2016] [Accepted: 06/20/2016] [Indexed: 01/17/2023]
Abstract
Outer membrane proteins (OMPs) play a central role in the integrity of the outer membrane of Gram-negative bacteria. Unfolded OMPs (uOMPs) transit across the periplasm, and subsequent folding and assembly are crucial for biogenesis. Chaperones and the essential β-barrel assembly machinery (BAM) complex facilitate these processes. In vitro studies suggest that some chaperones sequester uOMPs in internal cavities during their periplasmic transit to prevent deleterious aggregation. Upon reaching the outer membrane, the BAM complex acts catalytically to accelerate uOMP folding. Complementary in vivo experiments have revealed the localization and activity of the BAM complex in living cells. Completing an understanding of OMP biogenesis will require a holistic view of the interplay among the individual components discussed here.
Collapse
Affiliation(s)
- Ashlee M Plummer
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Karen G Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
36
|
Horne JE, Radford SE. A growing toolbox of techniques for studying β-barrel outer membrane protein folding and biogenesis. Biochem Soc Trans 2016; 44:802-9. [PMID: 27284045 PMCID: PMC4900752 DOI: 10.1042/bst20160020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 01/21/2023]
Abstract
Great strides into understanding protein folding have been made since the seminal work of Anfinsen over 40 years ago, but progress in the study of membrane protein folding has lagged behind that of their water soluble counterparts. Researchers in these fields continue to turn to more advanced techniques such as NMR, mass spectrometry, molecular dynamics (MD) and single molecule methods to interrogate how proteins fold. Our understanding of β-barrel outer membrane protein (OMP) folding has benefited from these advances in the last decade. This class of proteins must traverse the periplasm and then insert into an asymmetric lipid membrane in the absence of a chemical energy source. In this review we discuss old, new and emerging techniques used to examine the process of OMP folding and biogenesis in vitro and describe some of the insights and new questions these techniques have revealed.
Collapse
Affiliation(s)
- Jim E Horne
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, The University of Leeds, Leeds LS2 9JT, U.K
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, The University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|