1
|
Tao P, Wang E, Xiao Y. Pathway regulation mechanism revealed by cotranslational folding of villin headpiece subdomain HP35. Phys Rev E 2021; 101:052403. [PMID: 32575289 DOI: 10.1103/physreve.101.052403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/13/2020] [Indexed: 01/07/2023]
Abstract
Cotranslational folding is one of the most important features of protein folding in vivo. Although many studies have shown that the folding pathways of cotranslational folding are different from free folding in vitro, the detailed mechanism of folding dynamics is lacking. Here we combine all-atom molecular simulations with an ideal ribosome tunnel model to investigate the cotranslational folding of villin headpiece subdomain HP35. By comparing the folding dynamics between cotranslational folding and free folding, we found that cotranslational folding tends to fold along the pathway that is easier to fold into native state in the latter. In addition, the roles of the ribosome tunnel and sequential folding are analyzed separately. Our results show that the ribosome can prevent the untimely folding of the C segment of HP35 to reduce the non-native interactions, while the translation speed can regulate the amounts of native and non-native interactions and the balance between them. Overall, these results give insights into the general mechanisms of cotranslational protein folding.
Collapse
Affiliation(s)
- Peng Tao
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Ercheng Wang
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yi Xiao
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
2
|
Kirmizialtin S, Pitici F, Cardenas AE, Elber R, Thirumalai D. Dramatic Shape Changes Occur as Cytochrome c Folds. J Phys Chem B 2020; 124:8240-8248. [PMID: 32840372 DOI: 10.1021/acs.jpcb.0c05802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extensive experimental studies on the folding of cytochrome c (Cyt c) make this small protein an ideal target for atomic detailed simulations for the purposes of quantitatively characterizing the structural transitions and the associated time scales for folding to the native state from an ensemble of unfolded states. We use previously generated atomically detailed folding trajectories by the stochastic difference equation in length to calculate the time-dependent changes in the small-angle X-ray scattering (SAXS) profiles. Excellent agreement is obtained between experiments and simulations for the time-dependent SAXS spectra, allowing us to identify the structures of the folding intermediates, which shows that Cyt c reaches the native state by a sequential folding mechanism. Using the ensembles of structures along the folding pathways, we show that compaction and the sphericity of Cyt c change dramatically from the prolate ellipsoid shape in the unfolded state to the spherical native state. Our data, which are in unprecedented quantitative agreement with all aspects of time-resolved SAXS experiments, show that hydrophobic collapse and amide group protection coincide on the 100 microseconds time scale, which is in accordance with ultrafast hydrogen/deuterium exchange studies. Based on these results, we propose that compaction of polypeptide chains, accompanied by dramatic shape changes, is a universal characteristic of globular proteins, regardless of the underlying folding mechanism.
Collapse
Affiliation(s)
- Serdal Kirmizialtin
- Chemistry Program, Math and Sciences, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | | | - Alfredo E Cardenas
- Institute for Computational Science and Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ron Elber
- Institute for Computational Science and Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.,Department of Chemistry, University of Texas, Austin Texas, 78712, United States
| | - D Thirumalai
- Department of Chemistry, University of Texas, Austin Texas, 78712, United States
| |
Collapse
|
3
|
Abstract
AbstractThe dynamics of proteins in solution includes a variety of processes, such as backbone and side-chain fluctuations, interdomain motions, as well as global rotational and translational (i.e. center of mass) diffusion. Since protein dynamics is related to protein function and essential transport processes, a detailed mechanistic understanding and monitoring of protein dynamics in solution is highly desirable. The hierarchical character of protein dynamics requires experimental tools addressing a broad range of time- and length scales. We discuss how different techniques contribute to a comprehensive picture of protein dynamics, and focus in particular on results from neutron spectroscopy. We outline the underlying principles and review available instrumentation as well as related analysis frameworks.
Collapse
|
4
|
Takahashi S, Yoshida A, Oikawa H. Hypothesis: structural heterogeneity of the unfolded proteins originating from the coupling of the local clusters and the long-range distance distribution. Biophys Rev 2018; 10:363-373. [PMID: 29446056 DOI: 10.1007/s12551-018-0405-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/05/2018] [Indexed: 01/22/2023] Open
Abstract
We propose a hypothesis that explains two apparently contradicting observations for the heterogeneity of the unfolded proteins. First, the line confocal method of the single-molecule Förster resonance energy transfer (sm-FRET) spectroscopy revealed that the unfolded proteins possess broad peaks in the FRET efficiency plot, implying the significant heterogeneity that lasts longer than milliseconds. Second, the fluorescence correlation method demonstrated that the unfolded proteins fluctuate in the time scale shorter than 100 ns. To formulate the hypothesis, we first summarize the recent consensus for the structure and dynamics of the unfolded proteins. We next discuss the conventional method of the sm-FRET spectroscopy and its limitations for the analysis of the unfolded proteins, followed by the advantages of the line confocal method that revealed the heterogeneity. Finally, we propose that the structural heterogeneity formed by the local clustering of hydrophobic residues modulates the distribution of the long-range distance between the labeled chromophores, resulting in the broadening of the peak in the FRET efficiency plot. A clustering of hydrophobic residues around the chromophore might further contribute to the broadening. The proposed clusters are important for the understanding of protein folding mechanism.
Collapse
Affiliation(s)
- Satoshi Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan. .,Department of Chemistry, Graduate school of Science, Tohoku University, Aramaki 6-3, Aoba-ku, Sendai, 980-8578, Japan.
| | - Aya Yoshida
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.,Department of Chemistry, Graduate school of Science, Tohoku University, Aramaki 6-3, Aoba-ku, Sendai, 980-8578, Japan
| | - Hiroyuki Oikawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.,Department of Chemistry, Graduate school of Science, Tohoku University, Aramaki 6-3, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
5
|
Oikawa H, Takahashi T, Kamonprasertsuk S, Takahashi S. Microsecond resolved single-molecule FRET time series measurements based on the line confocal optical system combined with hybrid photodetectors. Phys Chem Chem Phys 2018; 20:3277-3285. [PMID: 29138775 DOI: 10.1039/c7cp06268k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Single-molecule (sm) fluorescence time series measurements based on the line confocal optical system are a powerful strategy for the investigation of the structure, dynamics, and heterogeneity of biological macromolecules. This method enables the detection of more than several thousands of fluorescence photons per millisecond from single fluorophores, implying that the potential time resolution for measurements of the fluorescence resonance energy transfer (FRET) efficiency is 10 μs. However, the necessity of using imaging photodetectors in the method limits the time resolution in the FRET efficiency measurements to approximately 100 μs. In this investigation, a new photodetector called a hybrid photodetector (HPD) was incorporated into the line confocal system to improve the time resolution without sacrificing the length of the time series detection. Among several settings examined, the system based on a slit width of 10 μm and a high-speed counting device made the best of the features of the line confocal optical system and the HPD. This method achieved a time resolution of 10 μs and an observation time of approximately 5 ms in the sm-FRET time series measurements. The developed device was used for the native state of the B domain of protein A.
Collapse
Affiliation(s)
- Hiroyuki Oikawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan.
| | | | | | | |
Collapse
|
6
|
Arai M. Unified understanding of folding and binding mechanisms of globular and intrinsically disordered proteins. Biophys Rev 2018; 10:163-181. [PMID: 29307002 PMCID: PMC5899706 DOI: 10.1007/s12551-017-0346-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022] Open
Abstract
Extensive experimental and theoretical studies have advanced our understanding of the mechanisms of folding and binding of globular proteins, and coupled folding and binding of intrinsically disordered proteins (IDPs). The forces responsible for conformational changes and binding are common in both proteins; however, these mechanisms have been separately discussed. Here, we attempt to integrate the mechanisms of coupled folding and binding of IDPs, folding of small and multi-subdomain proteins, folding of multimeric proteins, and ligand binding of globular proteins in terms of conformational selection and induced-fit mechanisms as well as the nucleation–condensation mechanism that is intermediate between them. Accumulating evidence has shown that both the rate of conformational change and apparent rate of binding between interacting elements can determine reaction mechanisms. Coupled folding and binding of IDPs occurs mainly by induced-fit because of the slow folding in the free form, while ligand binding of globular proteins occurs mainly by conformational selection because of rapid conformational change. Protein folding can be regarded as the binding of intramolecular segments accompanied by secondary structure formation. Multi-subdomain proteins fold mainly by the induced-fit (hydrophobic collapse) mechanism, as the connection of interacting segments enhances the binding (compaction) rate. Fewer hydrophobic residues in small proteins reduce the intramolecular binding rate, resulting in the nucleation–condensation mechanism. Thus, the folding and binding of globular proteins and IDPs obey the same general principle, suggesting that the coarse-grained, statistical mechanical model of protein folding is promising for a unified theoretical description of all mechanisms.
Collapse
Affiliation(s)
- Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
| |
Collapse
|
7
|
Chung HS, Eaton WA. Protein folding transition path times from single molecule FRET. Curr Opin Struct Biol 2017; 48:30-39. [PMID: 29080467 DOI: 10.1016/j.sbi.2017.10.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 11/28/2022]
Abstract
The transition path is the tiny segment of a single molecule trajectory when the free energy barrier between states is crossed and for protein folding contains all of the information about the self-assembly mechanism. As a first step toward obtaining structural information during the transition path from experiments, single molecule FRET spectroscopy has been used to determine average transition path times from a photon-by-photon analysis of fluorescence trajectories. These results, obtained for several different proteins, have already provided new and demanding tests that support both the accuracy of all-atom molecular dynamics simulations and the basic postulates of energy landscape theory of protein folding.
Collapse
Affiliation(s)
- Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States.
| | - William A Eaton
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States.
| |
Collapse
|
8
|
Otosu T, Ishii K, Oikawa H, Arai M, Takahashi S, Tahara T. Highly Heterogeneous Nature of the Native and Unfolded States of the B Domain of Protein A Revealed by Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy. J Phys Chem B 2017; 121:5463-5473. [DOI: 10.1021/acs.jpcb.7b00546] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Kunihiko Ishii
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Oikawa
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1
Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | - Munehito Arai
- Department
of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Satoshi Takahashi
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1
Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | - Tahei Tahara
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
9
|
Zheng W, Borgia A, Buholzer K, Grishaev A, Schuler B, Best RB. Probing the Action of Chemical Denaturant on an Intrinsically Disordered Protein by Simulation and Experiment. J Am Chem Soc 2016; 138:11702-13. [PMID: 27583687 DOI: 10.1021/jacs.6b05443] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chemical denaturants are the most commonly used agents for unfolding proteins and are thought to act by better solvating the unfolded state. Improved solvation is expected to lead to an expansion of unfolded chains with increasing denaturant concentration, providing a sensitive probe of the denaturant action. However, experiments have so far yielded qualitatively different results concerning the effects of chemical denaturation. Studies using Förster resonance energy transfer (FRET) and other methods found an increase in radius of gyration with denaturant concentration, but most small-angle X-ray scattering (SAXS) studies found no change. This discrepancy therefore challenges our understanding of denaturation mechanism and more generally the accuracy of these experiments as applied to unfolded or disordered proteins. Here, we use all-atom molecular simulations to investigate the effect of urea and guanidinium chloride on the structure of the intrinsically disordered protein ACTR, which can be studied by experiment over a wide range of denaturant concentration. Using unbiased molecular simulations with a carefully calibrated denaturant model, we find that the protein chain indeed swells with increasing denaturant concentration. This is due to the favorable association of urea or guanidinium chloride with the backbone of all residues and with the side-chains of almost all residues, with denaturant-water transfer free energies inferred from this association in reasonable accord with experimental estimates. Interactions of the denaturants with the backbone are dominated by hydrogen bonding, while interactions with side-chains include other contributions. By computing FRET efficiencies and SAXS intensities at each denaturant concentration, we show that the simulation trajectories are in accord with both experiments on this protein, demonstrating that there is no fundamental inconsistency between the two types of experiment. Agreement with experiment also supports the picture of chemical denaturation described in our simulations, driven by weak association of denaturant with the protein. Our simulations support some assumptions needed for each experiment to accurately reflect changes in protein size, namely, that the commonly used FRET chromophores do not qualitatively alter the results and that possible effects such as preferential solvent partitioning into the interior of the chain do not interfere with the determination of radius of gyration from the SAXS experiments.
Collapse
Affiliation(s)
- Wenwei Zheng
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| | - Alessandro Borgia
- Department of Biochemistry, University of Zurich , Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Karin Buholzer
- Department of Biochemistry, University of Zurich , Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Alexander Grishaev
- National Institute of Standards and Technology and the Institute for Bioscience and Biotechnology Research , Rockville, Maryland 20850, United States
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich , Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
10
|
Saito M, Kamonprasertsuk S, Suzuki S, Nanatani K, Oikawa H, Kushiro K, Takai M, Chen PT, Chen EHL, Chen RPY, Takahashi S. Significant Heterogeneity and Slow Dynamics of the Unfolded Ubiquitin Detected by the Line Confocal Method of Single-Molecule Fluorescence Spectroscopy. J Phys Chem B 2016; 120:8818-29. [DOI: 10.1021/acs.jpcb.6b05481] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Masataka Saito
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School and Faculty of Science, Tohoku University, Sendai 980-8578, Japan
| | - Supawich Kamonprasertsuk
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School and Faculty of Science, Tohoku University, Sendai 980-8578, Japan
| | - Satomi Suzuki
- Laboratory
of Applied Microbiology, Department of Microbial Biotechnology, Graduate
School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Kei Nanatani
- Department
of Microbial Resources, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Hiroyuki Oikawa
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School and Faculty of Science, Tohoku University, Sendai 980-8578, Japan
| | - Keiichiro Kushiro
- Department
of Bioengineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Madoka Takai
- Department
of Bioengineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Po-ting Chen
- Institute
of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd, Nankang, Taipei 11529, Taiwan
- Institute
of Biochemical Sciences, National Taiwan University, No. 1. Sec.
4, Roosevelt Rd, Taipei 10617, Taiwan
| | - Eric H.-L. Chen
- Institute
of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd, Nankang, Taipei 11529, Taiwan
| | - Rita P.-Y. Chen
- Institute
of Biological Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd, Nankang, Taipei 11529, Taiwan
- Institute
of Biochemical Sciences, National Taiwan University, No. 1. Sec.
4, Roosevelt Rd, Taipei 10617, Taiwan
| | - Satoshi Takahashi
- Institute
for Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School and Faculty of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
11
|
Sukenik S, Pogorelov TV, Gruebele M. Can Local Probes Go Global? A Joint Experiment-Simulation Analysis of λ(6-85) Folding. J Phys Chem Lett 2016; 7:1960-1965. [PMID: 27101436 DOI: 10.1021/acs.jpclett.6b00582] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The process of protein folding is known to involve global motions in a cooperative affair; the structure of most of the protein sequences is gained or lost over a narrow range of temperature, denaturant, or pressure perturbations. At the same time, recent simulations and experiments reveal a complex structural landscape with a rich set of local motions and conformational changes. We couple experimental kinetic and thermodynamic measurements with specifically tailored analysis of simulation data to isolate local versus global folding probes. We find that local probes exhibit lower melting temperatures, smaller surface area changes, and faster kinetics compared to global ones. We also see that certain local probes of folding match the global behavior more closely than others. Our work highlights the importance of using multiple probes to fully characterize protein folding dynamics by theory and experiment.
Collapse
Affiliation(s)
- Shahar Sukenik
- Department of Chemistry, School of Chemical Sciences, and Beckman Institute for Advanced Science and Technology, #National Center for Supercomputing Applications, and ‡Department of Physics and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign , Champaign, Illinois 61801, United States
| | - Taras V Pogorelov
- Department of Chemistry, School of Chemical Sciences, and Beckman Institute for Advanced Science and Technology, #National Center for Supercomputing Applications, and ‡Department of Physics and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign , Champaign, Illinois 61801, United States
| | - Martin Gruebele
- Department of Chemistry, School of Chemical Sciences, and Beckman Institute for Advanced Science and Technology, #National Center for Supercomputing Applications, and ‡Department of Physics and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign , Champaign, Illinois 61801, United States
| |
Collapse
|
12
|
Stockmar F, Kobitski AY, Nienhaus GU. Fast Folding Dynamics of an Intermediate State in RNase H Measured by Single-Molecule FRET. J Phys Chem B 2016; 120:641-9. [PMID: 26747376 DOI: 10.1021/acs.jpcb.5b09336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have studied the folding kinetics of the core intermediate (I) state of RNase H by using a combination of single-molecule FRET (smFRET) and hidden Markov model analysis. To measure fast dynamics in thermal equilibrium as a function of the concentration of the denaturant GdmCl, a special FRET labeled variant, RNase H 60-113, which is sensitive to folding of the protein core, was immobilized on PEGylated surfaces. Conformational transitions between the unfolded (U) state and the I state could be described by a two-state model within our experimental time resolution, with millisecond mean residence times. The I state population was always a minority species in the entire accessible range of denaturant concentrations. By introducing the measured free energy differences between the U and I states as constraints in global fits of the GdmCl dependence of FRET histograms of a differently labeled RNase H variant (RNase H 3-135), we were able to reveal the free energy differences and, thus, population ratios of all three macroscopic state ensembles, U, I and F (folded state) as a function of denaturant concentration.
Collapse
Affiliation(s)
- Florian Stockmar
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | - Andrei Yu Kobitski
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany.,Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Department of Physics, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|