1
|
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 2019; 46:W296-W303. [PMID: 29788355 PMCID: PMC6030848 DOI: 10.1093/nar/gky427] [Citation(s) in RCA: 7414] [Impact Index Per Article: 1482.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/07/2018] [Indexed: 11/13/2022] Open
Abstract
Homology modelling has matured into an important technique in structural biology, significantly contributing to narrowing the gap between known protein sequences and experimentally determined structures. Fully automated workflows and servers simplify and streamline the homology modelling process, also allowing users without a specific computational expertise to generate reliable protein models and have easy access to modelling results, their visualization and interpretation. Here, we present an update to the SWISS-MODEL server, which pioneered the field of automated modelling 25 years ago and been continuously further developed. Recently, its functionality has been extended to the modelling of homo- and heteromeric complexes. Starting from the amino acid sequences of the interacting proteins, both the stoichiometry and the overall structure of the complex are inferred by homology modelling. Other major improvements include the implementation of a new modelling engine, ProMod3 and the introduction a new local model quality estimation method, QMEANDisCo. SWISS-MODEL is freely available at https://swissmodel.expasy.org.
Collapse
Affiliation(s)
- Andrew Waterhouse
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Martino Bertoni
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Stefan Bienert
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Gabriel Studer
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Gerardo Tauriello
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Rafal Gumienny
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Florian T Heer
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Tjaart A P de Beer
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Christine Rempfer
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Lorenza Bordoli
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Rosalba Lepore
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - Torsten Schwede
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| |
Collapse
|
2
|
Ni D, Lu S, Zhang J. Emerging roles of allosteric modulators in the regulation of protein-protein interactions (PPIs): A new paradigm for PPI drug discovery. Med Res Rev 2019; 39:2314-2342. [PMID: 30957264 DOI: 10.1002/med.21585] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 03/12/2019] [Accepted: 03/24/2019] [Indexed: 12/26/2022]
Abstract
Protein-protein interactions (PPIs) are closely implicated in various types of cellular activities and are thus pivotal to health and disease states. Given their fundamental roles in a wide range of biological processes, the modulation of PPIs has enormous potential in drug discovery. However, owing to the general properties of large, flat, and featureless interfaces of PPIs, previous attempts have demonstrated that the generation of therapeutic agents targeting PPI interfaces is challenging, rendering them almost "undruggable" for decades. To date, rapid progress in chemical and structural biology techniques has promoted the exploitation of allostery as a novel approach in drug discovery. By attaching to allosteric sites that are topologically and spatially distinct from PPI interfaces, allosteric modulators can achieve improved physiochemical properties. Thus, allosteric modulators may represent an alternative strategy to target intractable PPIs and have attracted intense pharmaceutical interest. In this review, we first briefly introduce the characteristics of PPIs and then present different approaches for investigating PPIs, as well as the latest methods for modulating PPIs. Importantly, we comprehensively review the recent progress in the development of allosteric modulators to inhibit or stabilize PPIs. Finally, we conclude with future perspectives on the discovery of allosteric PPI modulators, especially the application of computational methods to aid in allosteric PPI drug discovery.
Collapse
Affiliation(s)
- Duan Ni
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,Center for Single-Cell Omics, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Marchetti F, Capelli R, Rizzato F, Laio A, Colombo G. The Subtle Trade-Off between Evolutionary and Energetic Constraints in Protein-Protein Interactions. J Phys Chem Lett 2019; 10:1489-1497. [PMID: 30855965 DOI: 10.1021/acs.jpclett.9b00191] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Life machinery, although overwhelmingly complex, is rooted on a rather limited number of molecular processes. One of the most important is protein-protein interaction. Metabolic regulation, protein folding control, and cellular motility are examples of processes based on the fine-tuned interaction of several protein partners. The region on the protein surface devoted to the recognition of a specific partner is essential for the function of the protein and is, therefore, likely to be conserved during evolution. On the other hand, the physical chemistry of amino acids underlies the mechanism of interactions. Both evolutionary and energetic constraints can then be used to build scoring functions capable of recognizing interaction sites. Our working hypothesis is that residues within the interaction interface tend at the same time to be evolutionarily conserved (to preserve their function) and to provide little contribution to the internal stabilization of the structure of their cognate protein, to facilitate conformational adaptation to the partner. Here, we show that for some classes of protein partners (for example, those involved in signal transduction and in enzymes) evolutionary constraints play the key role in defining the interaction surface. In contrast, energetic constraints emerge as more important in protein partners involved in immune response, in inhibitor proteins, and in structural proteins. Our results indicate that a general-purpose scoring function for protein-protein interaction should not be agnostic of the biological function of the partners.
Collapse
Affiliation(s)
- Filippo Marchetti
- Istituto di Chimica del Riconoscimento Molecolare , CNR Via Mario Bianco 9 , 20131 Milano , Italy
- Dipartimento di Chimica , Università degli Studi di Milano , Via Venezian 21 , I-20133 Milano , Italy
| | - Riccardo Capelli
- INM-9/IAS-5 Computational Biomedicine , Forschungszentrum Jülich , Wilhelm-Johnen-Straße , D-54245 Jülich , Germany
| | - Francesca Rizzato
- SISSA, Scuola Internazionale Superiore Studi Avanzati , Via Bonomea 265 , I-34136 Trieste , Italy
| | - Alessandro Laio
- SISSA, Scuola Internazionale Superiore Studi Avanzati , Via Bonomea 265 , I-34136 Trieste , Italy
- ICTP, International Centre for Theoretical Physics , Strada Costiera 11 , I-34100 Trieste , Italy
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare , CNR Via Mario Bianco 9 , 20131 Milano , Italy
- Dipartimento di Chimica , Università di Pavia , V.le Taramelli 12 , 27100 Pavia , Italy
| |
Collapse
|