1
|
Solomon LA, Witten J, Kodali G, Moser CC, Dutton PL. Tailorable Tetrahelical Bundles as a Toolkit for Redox Studies. J Phys Chem B 2022; 126:8177-8187. [PMID: 36219580 PMCID: PMC9589594 DOI: 10.1021/acs.jpcb.2c05119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Oxidoreductases have evolved over millions of years to perform a variety of metabolic tasks crucial for life. Understanding how these tasks are engineered relies on delivering external electron donors or acceptors to initiate electron transfer reactions. This is a challenge. Small-molecule redox reagents can act indiscriminately, poisoning the cell. Natural redox proteins are more selective, but finding the right partner can be difficult due to the limited number of redox potentials and difficulty tuning them. De novo proteins offer an alternative path. They are robust and can withstand mutations that allow for tailorable changes. They are also devoid of evolutionary artifacts and readily bind redox cofactors. However, no reliable set of engineering principles have been developed that allow for these proteins to be fine-tuned so their redox midpoint potential (Em) can form donor/acceptor pairs with any natural oxidoreductase. This work dissects protein-cofactor interactions that can be tuned to modulate redox potentials of acceptors and donors using a mutable de novo designed tetrahelical protein platform with iron tetrapyrrole cofactors as a test case. We show a series of engineered heme b-binding de novo proteins and quantify their resulting effect on Em. By focusing on the surface charge and buried charges, as well as cofactor placement, chemical modification, and ligation of cofactors, we are able to achieve a broad range of Em values spanning a range of 330 mV. We anticipate this work will guide the design of proteinaceous tools that can interface with natural oxidoreductases inside and outside the cell while shedding light on how natural proteins modulate Em values of bound cofactors.
Collapse
Affiliation(s)
- Lee A. Solomon
- Department
of Chemistry and Biochemistry, George Mason
University, Fairfax, Virginia22030, United States,
| | - Joshua Witten
- Department
of Biology, George Mason University, Fairfax, Virginia22030, United States
| | - Goutham Kodali
- Department
of Biochemistry and Biophysics, University
of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - Christopher C. Moser
- Department
of Biochemistry and Biophysics, University
of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| | - P. Leslie Dutton
- Department
of Biochemistry and Biophysics, University
of Pennsylvania, Philadelphia, Pennsylvania19104, United States
| |
Collapse
|
2
|
Tretyachenko V, Vymětal J, Neuwirthová T, Vondrášek J, Fujishima K, Hlouchová K. Modern and prebiotic amino acids support distinct structural profiles in proteins. Open Biol 2022; 12:220040. [PMID: 35728622 PMCID: PMC9213115 DOI: 10.1098/rsob.220040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The earliest proteins had to rely on amino acids available on early Earth before the biosynthetic pathways for more complex amino acids evolved. In extant proteins, a significant fraction of the 'late' amino acids (such as Arg, Lys, His, Cys, Trp and Tyr) belong to essential catalytic and structure-stabilizing residues. How (or if) early proteins could sustain an early biosphere has been a major puzzle. Here, we analysed two combinatorial protein libraries representing proxies of the available sequence space at two different evolutionary stages. The first is composed of the entire alphabet of 20 amino acids while the second one consists of only 10 residues (ASDGLIPTEV) representing a consensus view of plausibly available amino acids through prebiotic chemistry. We show that compact conformations resistant to proteolysis are surprisingly similarly abundant in both libraries. In addition, the early alphabet proteins are inherently more soluble and refoldable, independent of the general Hsp70 chaperone activity. By contrast, chaperones significantly increase the otherwise poor solubility of the modern alphabet proteins suggesting their coevolution with the amino acid repertoire. Our work indicates that while both early and modern amino acids are predisposed to supporting protein structure, they do so with different biophysical properties and via different mechanisms.
Collapse
Affiliation(s)
- Vyacheslav Tretyachenko
- Department of Cell Biology, Faculty of Science, Charles University, Prague 12843, Czech Republic,Department of Biochemistry, Faculty of Science, Charles University, Prague 12843, Czech Republic
| | - Jiří Vymětal
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 16610, Czech Republic
| | - Tereza Neuwirthová
- Department of Cell Biology, Faculty of Science, Charles University, Prague 12843, Czech Republic
| | - Jiří Vondrášek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 16610, Czech Republic
| | - Kosuke Fujishima
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 1528550, Japan,Graduate School of Media and Governance, Keio University, Fujisawa 2520882 Japan
| | - Klára Hlouchová
- Department of Cell Biology, Faculty of Science, Charles University, Prague 12843, Czech Republic,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 16610, Czech Republic
| |
Collapse
|
3
|
Abstract
Natural metalloproteins perform many functions - ranging from sensing to electron transfer and catalysis - in which the position and property of each ligand and metal, is dictated by protein structure. De novo protein design aims to define an amino acid sequence that encodes a specific structure and function, providing a critical test of the hypothetical inner workings of (metallo)proteins. To date, de novo metalloproteins have used simple, symmetric tertiary structures - uncomplicated by the large size and evolutionary marks of natural proteins - to interrogate structure-function hypotheses. In this Review, we discuss de novo design applications, such as proteins that induce complex, increasingly asymmetric ligand geometries to achieve function, as well as the use of more canonical ligand geometries to achieve stability. De novo design has been used to explore how proteins fine-tune redox potentials and catalyse both oxidative and hydrolytic reactions. With an increased understanding of structure-function relationships, functional proteins including O2-dependent oxidases, fast hydrolases, and multi-proton/multi-electron reductases, have been created. In addition, proteins can now be designed using xeno-biological metals or cofactors and principles from inorganic chemistry to derive new-to-nature functions. These results and the advances in computational protein design suggest a bright future for the de novo design of diverse, functional metalloproteins.
Collapse
Affiliation(s)
- Matthew J. Chalkley
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, (CA), USA
| | - Samuel I. Mann
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, (CA), USA
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, (CA), USA
| |
Collapse
|
4
|
Wu L, Qin L, Nie Y, Xu Y, Zhao YL. Computer-aided understanding and engineering of enzymatic selectivity. Biotechnol Adv 2021; 54:107793. [PMID: 34217814 DOI: 10.1016/j.biotechadv.2021.107793] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022]
Abstract
Enzymes offering chemo-, regio-, and stereoselectivity enable the asymmetric synthesis of high-value chiral molecules. Unfortunately, the drawback that naturally occurring enzymes are often inefficient or have undesired selectivity toward non-native substrates hinders the broadening of biocatalytic applications. To match the demands of specific selectivity in asymmetric synthesis, biochemists have implemented various computer-aided strategies in understanding and engineering enzymatic selectivity, diversifying the available repository of artificial enzymes. Here, given that the entire asymmetric catalytic cycle, involving precise interactions within the active pocket and substrate transport in the enzyme channel, could affect the enzymatic efficiency and selectivity, we presented a comprehensive overview of the computer-aided workflow for enzymatic selectivity. This review includes a mechanistic understanding of enzymatic selectivity based on quantum mechanical calculations, rational design of enzymatic selectivity guided by enzyme-substrate interactions, and enzymatic selectivity regulation via enzyme channel engineering. Finally, we discussed the computational paradigm for designing enzyme selectivity in silico to facilitate the advancement of asymmetric biosynthesis.
Collapse
Affiliation(s)
- Lunjie Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Lei Qin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Suqian Industrial Technology Research Institute of Jiangnan University, Suqian 223814, China.
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, MOE-LSB & MOE-LSC, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Jenkins JMX, Noble CEM, Grayson KJ, Mulholland AJ, Anderson JLR. Substrate promiscuity of a de novo designed peroxidase. J Inorg Biochem 2021; 217:111370. [PMID: 33621939 DOI: 10.1016/j.jinorgbio.2021.111370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 11/20/2022]
Abstract
The design and construction of de novo enzymes offer potentially facile routes to exploiting powerful chemistries in robust, expressible and customisable protein frameworks, while providing insight into natural enzyme function. To this end, we have recently demonstrated extensive catalytic promiscuity in a heme-containing de novo protein, C45. The diverse transformations that C45 catalyses include substrate oxidation, dehalogenation and carbon‑carbon bond formation. Here we explore the substrate promiscuity of C45's peroxidase activity, screening the de novo enzyme against a panel of peroxidase and dehaloperoxidase substrates. Consistent with the function of natural peroxidases, C45 exhibits a broad spectrum of substrate activities with selectivity dictated primarily by the redox potential of the substrate, and by extension, the active oxidising species in peroxidase chemistry, compounds I and II. Though the comparison of these redox potentials provides a threshold for determining activity for a given substrate, substrate:protein interactions are also likely to play a significant role in determining electron transfer rates from substrate to heme, affecting the kinetic parameters of the enzyme. We also used biomolecular simulation to screen substrates against a computational model of C45 to identify potential interactions and binding sites. Several sites of interest in close proximity to the heme cofactor were discovered, providing insight into the catalytic workings of C45.
Collapse
Affiliation(s)
- Jonathan M X Jenkins
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Claire E M Noble
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Katie J Grayson
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Adrian J Mulholland
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK; Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - J L Ross Anderson
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK; BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
6
|
Hiraga K, Mejzlik P, Marcisin M, Vostrosablin N, Gromek A, Arnold J, Wiewiora S, Svarba R, Prihoda D, Clarova K, Klempir O, Navratil J, Tupa O, Vazquez-Otero A, Walas MW, Holy L, Spale M, Kotowski J, Dzamba D, Temesi G, Russell JH, Marshall NM, Murphy GS, Bitton DA. Mutation Maker, An Open Source Oligo Design Platform for Protein Engineering. ACS Synth Biol 2021; 10:357-370. [PMID: 33433999 DOI: 10.1021/acssynbio.0c00542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein engineering is the discipline of developing useful proteins for applications in research, therapeutic, and industrial processes by modification of naturally occurring proteins or by invention of de novo proteins. Modern protein engineering relies on the ability to rapidly generate and screen diverse libraries of mutant proteins. However, design of mutant libraries is typically hampered by scale and complexity, necessitating development of advanced automation and optimization tools that can improve efficiency and accuracy. At present, automated library design tools are functionally limited or not freely available. To address these issues, we developed Mutation Maker, an open source mutagenic oligo design software for large-scale protein engineering experiments. Mutation Maker is not only specifically tailored to multisite random and directed mutagenesis protocols, but also pioneers bespoke mutagenic oligo design for de novo gene synthesis workflows. Enabled by a novel bundle of orchestrated heuristics, optimization, constraint-satisfaction and backtracking algorithms, Mutation Maker offers a versatile toolbox for gene diversification design at industrial scale. Supported by in silico simulations and compelling experimental validation data, Mutation Maker oligos produce diverse gene libraries at high success rates irrespective of genes or vectors used. Finally, Mutation Maker was created as an extensible platform on the notion that directed evolution techniques will continue to evolve and revolutionize current and future-oriented applications.
Collapse
Affiliation(s)
- Kaori Hiraga
- Protein Engineering, MRL, Merck & Co. Inc., Rahway, New Jersey 07065, United States
| | - Petr Mejzlik
- AI & Big Data Analytics, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Matej Marcisin
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Nikita Vostrosablin
- AI & Big Data Analytics, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Anna Gromek
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Jakub Arnold
- AI & Big Data Analytics, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Sebastian Wiewiora
- AI & Big Data Analytics, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Rastislav Svarba
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - David Prihoda
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
- Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Kamila Clarova
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
- Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Ondrej Klempir
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Josef Navratil
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Ondrej Tupa
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | | | - Marcin W. Walas
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Lukas Holy
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Martin Spale
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Jakub Kotowski
- AI & Big Data Analytics, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - David Dzamba
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Gergely Temesi
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| | - Jay H. Russell
- Protein Engineering, MRL, Merck & Co. Inc., Rahway, New Jersey 07065, United States
| | - Nicholas M. Marshall
- Protein Engineering, MRL, Merck & Co. Inc., Rahway, New Jersey 07065, United States
| | - Grant S. Murphy
- Protein Engineering, MRL, Merck & Co. Inc., Rahway, New Jersey 07065, United States
| | - Danny A. Bitton
- R&D Informatics Solutions, MSD Czech Republic s.r.o., 150 00 Prague, Czech Republic
| |
Collapse
|
7
|
Tong CL, Lee KH, Seelig B. De novo proteins from random sequences through in vitro evolution. Curr Opin Struct Biol 2021; 68:129-134. [PMID: 33517151 DOI: 10.1016/j.sbi.2020.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/29/2020] [Indexed: 11/29/2022]
Abstract
Natural proteins are the result of billions of years of evolution. The earliest predecessors of today's proteins are believed to have emerged from random polypeptides. While we have no means to determine how this process exactly happened, there is great interest in understanding how it reasonably could have happened. We are reviewing how researchers have utilized in vitro selection and molecular evolution methods to investigate plausible scenarios for the emergence of early functional proteins. The studies range from analyzing general properties and structural features of unevolved random polypeptides to isolating de novo proteins with specific functions from synthetic randomized sequence libraries or generating novel proteins by combining evolution with rational design. While the results are exciting, more work is needed to fully unravel the mechanisms that seeded protein-dominated biology.
Collapse
Affiliation(s)
- Cher Ling Tong
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA; BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Kun-Hwa Lee
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA; BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Burckhard Seelig
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA; BioTechnology Institute, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
8
|
Designing minimalist membrane proteins. Biochem Soc Trans 2020; 47:1233-1245. [PMID: 31671181 PMCID: PMC6824673 DOI: 10.1042/bst20190170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
The construction of artificial membrane proteins from first principles is of fundamental interest and holds considerable promise for new biotechnologies. This review considers the potential advantages of adopting a strictly minimalist approach to the process of membrane protein design. As well as the practical benefits of miniaturisation and simplicity for understanding sequence-structure-function relationships, minimalism should also support the abstract conceptualisation of membrane proteins as modular components for synthetic biology. These ideas are illustrated with selected examples that focus upon α-helical membrane proteins, and which demonstrate how such minimalist membrane proteins might be integrated into living biosystems.
Collapse
|
9
|
Abstract
Proteins are molecular machines whose function depends on their ability to achieve complex folds with precisely defined structural and dynamic properties. The rational design of proteins from first-principles, or de novo, was once considered to be impossible, but today proteins with a variety of folds and functions have been realized. We review the evolution of the field from its earliest days, placing particular emphasis on how this endeavor has illuminated our understanding of the principles underlying the folding and function of natural proteins, and is informing the design of macromolecules with unprecedented structures and properties. An initial set of milestones in de novo protein design focused on the construction of sequences that folded in water and membranes to adopt folded conformations. The first proteins were designed from first-principles using very simple physical models. As computers became more powerful, the use of the rotamer approximation allowed one to discover amino acid sequences that stabilize the desired fold. As the crystallographic database of protein structures expanded in subsequent years, it became possible to construct proteins by assembling short backbone fragments that frequently recur in Nature. The second set of milestones in de novo design involves the discovery of complex functions. Proteins have been designed to bind a variety of metals, porphyrins, and other cofactors. The design of proteins that catalyze hydrolysis and oxygen-dependent reactions has progressed significantly. However, de novo design of catalysts for energetically demanding reactions, or even proteins that bind with high affinity and specificity to highly functionalized complex polar molecules remains an importnant challenge that is now being achieved. Finally, the protein design contributed significantly to our understanding of membrane protein folding and transport of ions across membranes. The area of membrane protein design, or more generally of biomimetic polymers that function in mixed or non-aqueous environments, is now becoming increasingly possible.
Collapse
|
10
|
Solis AD. Reduced alphabet of prebiotic amino acids optimally encodes the conformational space of diverse extant protein folds. BMC Evol Biol 2019; 19:158. [PMID: 31362700 PMCID: PMC6668081 DOI: 10.1186/s12862-019-1464-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/19/2019] [Indexed: 11/10/2022] Open
Abstract
Background There is wide agreement that only a subset of the twenty standard amino acids existed prebiotically in sufficient concentrations to form functional polypeptides. We ask how this subset, postulated as {A,D,E,G,I,L,P,S,T,V}, could have formed structures stable enough to found metabolic pathways. Inspired by alphabet reduction experiments, we undertook a computational analysis to measure the structural coding behavior of sequences simplified by reduced alphabets. We sought to discern characteristics of the prebiotic set that would endow it with unique properties relevant to structure, stability, and folding. Results Drawing on a large dataset of single-domain proteins, we employed an information-theoretic measure to assess how well the prebiotic amino acid set preserves fold information against all other possible ten-amino acid sets. An extensive virtual mutagenesis procedure revealed that the prebiotic set excellently preserves sequence-dependent information regarding both backbone conformation and tertiary contact matrix of proteins. We observed that information retention is fold-class dependent: the prebiotic set sufficiently encodes the structure space of α/β and α + β folds, and to a lesser extent, of all-α and all-β folds. The prebiotic set appeared insufficient to encode the small proteins. Assessing how well the prebiotic set discriminates native vs. incorrect sequence-structure matches, we found that α/β and α + β folds exhibit more pronounced energy gaps with the prebiotic set than with nearly all alternatives. Conclusions The prebiotic set optimally encodes local backbone structures that appear in the folded environment and near-optimally encodes the tertiary contact matrix of extant proteins. The fold-class-specific patterns observed from our structural analysis confirm the postulated timeline of fold appearance in proteogenesis derived from proteomic sequence analyses. Polypeptides arising in a prebiotic environment will likely form α/β and α + β-like folds if any at all. We infer that the progressive expansion of the alphabet allowed the increased conformational stability and functional specificity of later folds, including all-α, all-β, and small proteins. Our results suggest that prebiotic sequences are amenable to mutations that significantly lower native conformational energies and increase discrimination amidst incorrect folds. This property may have assisted the genesis of functional proto-enzymes prior to the expansion of the full amino acid alphabet.
Collapse
Affiliation(s)
- Armando D Solis
- Biological Sciences Department, New York City College of Technology (City Tech), The City University of New York (CUNY), 285 Jay Street, Brooklyn, NY, 11201, USA.
| |
Collapse
|
11
|
Abstract
Photosynthesis and nitrogen fixation became evolutionarily immutable as “frozen metabolic accidents” because multiple interactions between the proteins and protein complexes involved led to their co-evolution in modules. This has impeded their adaptation to an oxidizing atmosphere, and reconfiguration now requires modification or replacement of whole modules, using either natural modules from exotic species or non-natural proteins with similar interaction potential. Ultimately, the relevant complexes might be reconstructed (almost) from scratch, starting either from appropriate precursor processes or by designing alternative pathways. These approaches will require advances in synthetic biology, laboratory evolution, and a better understanding of module functions.
Collapse
Affiliation(s)
- Dario Leister
- Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
12
|
Chino M, Zhang SQ, Pirro F, Leone L, Maglio O, Lombardi A, DeGrado WF. Spectroscopic and metal binding properties of a de novo metalloprotein binding a tetrazinc cluster. Biopolymers 2018; 109:e23339. [PMID: 30203532 PMCID: PMC6218314 DOI: 10.1002/bip.23229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/27/2022]
Abstract
De novo design provides an attractive approach, which allows one to test and refine the principles guiding metalloproteins in defining the geometry and reactivity of their metal ion cofactors. Although impressive progress has been made in designing proteins that bind transition metal ions including iron-sulfur clusters, the design of tetranuclear clusters with oxygen-rich environments remains in its infancy. In previous work, we described the design of homotetrameric four-helix bundles that bind tetra-Zn2+ clusters. The crystal structures of the helical proteins were in good agreement with the overall design, and the metal-binding and conformational properties of the helical bundles in solution were consistent with the crystal structures. However, the corresponding apo-proteins were not fully folded in solution. In this work, we design three peptides, based on the crystal structure of the original bundles. One of the peptides forms tetramers in aqueous solution in the absence of metal ions as assessed by CD and NMR. It also binds Zn2+ in the intended stoichiometry. These studies strongly suggest that the desired structure has been achieved in the apo state, providing evidence that the peptide is able to actively impart the designed geometry to the metal cluster.
Collapse
Affiliation(s)
- Marco Chino
- Department of Chemical Sciences, University of Napoli “Federico II”, Via Cintia, 46, 80126 Napoli, Italy
| | - Shao-Qing Zhang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA 94158-9001, United States
- Department of Chemistry, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104-6396, United States
| | - Fabio Pirro
- Department of Chemical Sciences, University of Napoli “Federico II”, Via Cintia, 46, 80126 Napoli, Italy
| | - Linda Leone
- Department of Chemical Sciences, University of Napoli “Federico II”, Via Cintia, 46, 80126 Napoli, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Napoli “Federico II”, Via Cintia, 46, 80126 Napoli, Italy
- Institute of Biostructure and Bioimaging, National Research Council, via Mezzocannone, 16, 80134, Napoli, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli “Federico II”, Via Cintia, 46, 80126 Napoli, Italy
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA 94158-9001, United States
| |
Collapse
|
13
|
Kobayashi N, Inano K, Sasahara K, Sato T, Miyazawa K, Fukuma T, Hecht MH, Song C, Murata K, Arai R. Self-Assembling Supramolecular Nanostructures Constructed from de Novo Extender Protein Nanobuilding Blocks. ACS Synth Biol 2018; 7:1381-1394. [PMID: 29690759 DOI: 10.1021/acssynbio.8b00007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design of novel proteins that self-assemble into supramolecular complexes is important for development in nanobiotechnology and synthetic biology. Recently, we designed and created a protein nanobuilding block (PN-Block), WA20-foldon, by fusing an intermolecularly folded dimeric de novo WA20 protein and a trimeric foldon domain of T4 phage fibritin (Kobayashi et al., J. Am. Chem. Soc. 2015, 137, 11285). WA20-foldon formed several types of self-assembling nanoarchitectures in multiples of 6-mers, including a barrel-like hexamer and a tetrahedron-like dodecamer. In this study, to construct chain-like polymeric nanostructures, we designed de novo extender protein nanobuilding blocks (ePN-Blocks) by tandemly fusing two de novo binary-patterned WA20 proteins with various linkers. The ePN-Blocks with long helical linkers or flexible linkers were expressed in soluble fractions of Escherichia coli, and the purified ePN-Blocks were analyzed by native PAGE, size exclusion chromatography-multiangle light scattering (SEC-MALS), small-angle X-ray scattering (SAXS), and transmission electron microscopy. These results suggest formation of various structural homo-oligomers. Subsequently, we reconstructed hetero-oligomeric complexes from extender and stopper PN-Blocks by denaturation and refolding. The present SEC-MALS and SAXS analyses show that extender and stopper PN-Block (esPN-Block) heterocomplexes formed different types of extended chain-like conformations depending on their linker types. Moreover, atomic force microscopy imaging in liquid suggests that the esPN-Block heterocomplexes with metal ions further self-assembled into supramolecular nanostructures on mica surfaces. Taken together, the present data demonstrate that the design and construction of self-assembling PN-Blocks using de novo proteins is a useful strategy for building polymeric nanoarchitectures of supramolecular protein complexes.
Collapse
Affiliation(s)
- Naoya Kobayashi
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | | | | | - Takaaki Sato
- Center for Energy and Environmental Science, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Nagano 380-8553, Japan
| | - Keisuke Miyazawa
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Takeshi Fukuma
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Michael H Hecht
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Chihong Song
- National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Ryoichi Arai
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi, Yokohama 230-0045, Japan
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Nagano 390-8621, Japan
- Department of Supramolecular Complexes, Research Center for Fungal and Microbial Dynamism, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| |
Collapse
|