1
|
Zhou H, Hutchings J, Shiozaki M, Zhao X, Doolittle LK, Yang S, Yan R, Jean N, Riggi M, Yu Z, Villa E, Rosen MK. Quantitative Spatial Analysis of Chromatin Biomolecular Condensates using Cryo-Electron Tomography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626131. [PMID: 39677698 PMCID: PMC11642791 DOI: 10.1101/2024.12.01.626131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Phase separation is an important mechanism to generate certain biomolecular condensates and organize the cell interior. Condensate formation and function remain incompletely understood due to difficulties in visualizing the condensate interior at high resolution. Here we analyzed the structure of biochemically reconstituted chromatin condensates through cryo-electron tomography. We found that traditional blotting methods of sample preparation were inadequate, and high-pressure freezing plus focused ion beam milling was essential to maintain condensate integrity. To identify densely packed molecules within the condensate, we integrated deep learning-based segmentation with novel context-aware template matching. Our approaches were developed on chromatin condensates, and were also effective on condensed regions of in situ native chromatin. Using these methods, we determined the average structure of nucleosomes to 6.1 and 12 Å resolution in reconstituted and native systems, respectively, and found that nucleosomes have a nearly random orientation distribution in both cases. Our methods should be applicable to diverse biochemically reconstituted biomolecular condensates and to some condensates in cells.
Collapse
Affiliation(s)
- Huabin Zhou
- Department of Biophysics, Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Joshua Hutchings
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Momoko Shiozaki
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Xiaowei Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Lynda K Doolittle
- Department of Biophysics, Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shixin Yang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Rui Yan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Nikki Jean
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Margot Riggi
- Max Planck Institute for Biochemistry, Martinsried/Munich D-82152, Germany
| | - Zhiheng Yu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Elizabeth Villa
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael K Rosen
- Department of Biophysics, Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
2
|
Hicks CW, Gliech CR, Zhang X, Rahman S, Vasquez S, Holland AJ, Wolberger C. Haspin kinase binds to a nucleosomal DNA supergroove. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595243. [PMID: 38826405 PMCID: PMC11142183 DOI: 10.1101/2024.05.21.595243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Phosphorylation of histone H3 threonine 3 (H3T3) by Haspin recruits the chromosomal passenger complex to the inner centromere and ensures proper cell cycle progression through mitosis. The mechanism by which Haspin binds to nucleosomes to phosphorylate H3T3 is not known. We report here cryo-EM structures of the Haspin kinase domain bound to a nucleosome. In contrast with previous structures of histone-modifying enzymes, Haspin solely contacts the nucleosomal DNA, inserting into a supergroove formed by apposing major grooves of two DNA gyres. This unique binding mode provides a plausible mechanism by which Haspin can bind to nucleosomes in a condensed chromatin environment to phosphorylate H3T3. We identify key basic residues in the Haspin kinase domain that are essential for phosphorylation of nucleosomal histone H3 and binding to mitotic chromatin. Our structure is the first of a kinase domain bound to a nucleosome and is the first example of a histone-modifying enzyme that binds to nucleosomes solely through DNA contacts.
Collapse
|
3
|
Yang L, Ruan Y, Xu H. HIST3H2A promotes the progression of prostate cancer through inhibiting cell necroptosis. BMC Cancer 2024; 24:544. [PMID: 38684944 PMCID: PMC11059659 DOI: 10.1186/s12885-024-12308-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
In recent years, there has been an increase in the incidence and mortality rates of prostate cancer (PCa). However, the specific molecular mechanisms underlying its occurrence and development remain unclear, necessitating the identification of new therapeutic targets. Through bioinformatics analysis, we discovered a previously unstudied differential gene called HIST3H2A in prostate cancer. Our study revealed that HIST3H2A is highly expressed in PCa tissues, as confirmed by analysis of both the GEO and UALCAN databases. Further analysis using the KEGG database demonstrated that HIST3H2A regulates the pathway of programmed necroptosis in cells. Additionally, we observed significant up-regulation of HIST3H2A in PCa tissues and cell lines. HIST3H2A was found to regulate cell proliferation, migration, invasion, and the epithelial-mesenchymal transition (EMT) process in tumors. Notably, HIST3H2A's role in regulating programmed necroptosis in prostate cancer cells differs from its role in apoptosis. In vitro and in vivo experiments collectively support the key role of HIST3H2A in promoting the development of prostate cancer, highlighting its potential as a therapeutic target for patients with PCa.
Collapse
Affiliation(s)
- Lihong Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Yong Ruan
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China.
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
4
|
Xu W, Zhang H, Guo W, Jiang L, Zhao Y, Peng Y. Deciphering principles of nucleosome interactions and impact of cancer-associated mutations from comprehensive interaction network analysis. Brief Bioinform 2024; 25:bbad532. [PMID: 38329268 PMCID: PMC10851104 DOI: 10.1093/bib/bbad532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/30/2023] [Accepted: 12/23/2023] [Indexed: 02/09/2024] Open
Abstract
Nucleosomes represent hubs in chromatin organization and gene regulation and interact with a plethora of chromatin factors through different modes. In addition, alterations in histone proteins such as cancer mutations and post-translational modifications have profound effects on histone/nucleosome interactions. To elucidate the principles of histone interactions and the effects of those alterations, we developed histone interactomes for comprehensive mapping of histone-histone interactions (HHIs), histone-DNA interactions (HDIs), histone-partner interactions (HPIs) and DNA-partner interactions (DPIs) of 37 organisms, which contains a total of 3808 HPIs from 2544 binding proteins and 339 HHIs, 100 HDIs and 142 DPIs across 110 histone variants. With the developed networks, we explored histone interactions at different levels of granularities (protein-, domain- and residue-level) and performed systematic analysis on histone interactions at a large scale. Our analyses have characterized the preferred binding hotspots on both nucleosomal/linker DNA and histone octamer and unraveled diverse binding modes between nucleosome and different classes of binding partners. Last, to understand the impact of histone cancer-associated mutations on histone/nucleosome interactions, we complied one comprehensive cancer mutation dataset including 7940 cancer-associated histone mutations and further mapped those mutations onto 419,125 histone interactions at the residue level. Our quantitative analyses point to histone cancer-associated mutations' strongly disruptive effects on HHIs, HDIs and HPIs. We have further predicted 57 recurrent histone cancer mutations that have large effects on histone/nucleosome interactions and may have driver status in oncogenesis.
Collapse
Affiliation(s)
- Wang Xu
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Houfang Zhang
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Wenhan Guo
- Computational Science Program, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Lijun Jiang
- Hubei Key Laboratory of Genetic Regulation & Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Yunhui Peng
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
5
|
Peng HC, Castro GL, Karthikeyan V, Jarrett A, Katz MA, Hargrove JA, Hoang D, Hilber S, Meng W, Wang L, Fick RJ, Ahn JM, Kreutz C, Stelling AL. Measuring the Enthalpy of an Individual Hydrogen Bond in a DNA Duplex with Nucleobase Isotope Editing and Variable-Temperature Infrared Spectroscopy. J Phys Chem Lett 2023; 14:4313-4321. [PMID: 37130045 DOI: 10.1021/acs.jpclett.3c00178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The level of interest in probing the strength of noncovalent interactions in DNA duplexes is high, as these weak forces dictate the range of suprastructures the double helix adopts under different conditions, in turn directly impacting the biological functions and industrial applications of duplexes that require making and breaking them to access the genetic code. However, few experimental tools can measure these weak forces embedded within large biological suprastructures in the native solution environment. Here, we develop experimental methods for detecting the presence of a single noncovalent interaction [a hydrogen bond (H-bond)] within a large DNA duplex in solution and measure its formation enthalpy (ΔHf). We report that introduction of a H-bond into the TC2═O group from the noncanonical nucleobase 2-aminopurine produces an expected decrease ∼10 ± 0.76 cm-1 (from ∼1720 cm-1 in Watson-Crick to ∼1710 cm-1 in 2-aminopurine), which correlates with an enthalpy of ∼0.93 ± 0.066 kcal/mol for this interaction.
Collapse
Affiliation(s)
- Hao-Che Peng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Gabrielle L Castro
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Varshini Karthikeyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Alina Jarrett
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Melanie A Katz
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - James A Hargrove
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - David Hoang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Stefan Hilber
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Wenting Meng
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Robert J Fick
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Jung-Mo Ahn
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Allison L Stelling
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
6
|
Ranathunga DTS, Torabifard H. Histone tail electrostatics modulate E2-E3 enzyme dynamics: a gateway to regulate ubiquitination machinery. Phys Chem Chem Phys 2023; 25:3361-3374. [PMID: 36633205 DOI: 10.1039/d2cp04059j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BRCA1 (Breast Cancer-Associated Protein 1) is a human tumor suppressor that functions as an ubiquitin (Ub) ligase enzyme (E3) and plays a key role in genomic stability and DNA repair. Heterodimerization of BRCA1 with BARD1 (BRCA1-associated RING domain protein 1) is known to increase its Ub ligase activity and is important for its stability, and cooperative activation of UbcH5c (Ub conjugating enzyme (E2)). Recent studies demonstrate the importance of ubiquitination of the nucleosomal H2A C-terminal tail by BRCA1/BARD1-UbcH5c in which its mutations inhibit ubiquitination, predispose cells to chromosomal instability and greatly increase the likelihood of breast and ovarian cancer development. Due to the lack of molecular-level insight on the flexible and dis-ordered H2A C-tail, its ubiquitination mechanism by BRCA1/BARD1-UbcH5c and its function and relationship to cancer susceptibility remain elusive. Here, we use molecular dynamics simulations to provide molecular-level insights into the dynamics of the less-studied H2A C-tail and BRCA1/BARD1-UbcH5c on the nucleosome surface and their effect on ubiquitination. Our results precisely identify the key interactions and residues that trigger conformational transitions of BRCA1/BARD1-UbcH5c, and characterize the important role of histone electrostatics in their dynamics. We provide a mechanistic basis for the H2A C-tail lysine approach to UbcH5c and show the role of H2A C-tail and UbcH5c dynamics in lysine ubiquitination. Furthermore, our data demonstrate the potential for ubiquitination based on the lysine position of the C-tail. Altogether, the findings of this study provide unrevealed insights into the mechanism of H2A C-tail ubiquitination and help us understand the communication between Ub ligase/Ub conjugating enzymes (E3/E2) and nucleosome to regulate ubiquitination machinery, paving the way for the development of effective treatments for cancer and chronic pain.
Collapse
Affiliation(s)
- Dineli T S Ranathunga
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA.
| | - Hedieh Torabifard
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA.
| |
Collapse
|
7
|
Targeting the Nucleosome Acidic Patch by Viral Proteins: Two Birds with One Stone? mBio 2022; 13:e0173321. [PMID: 35343785 PMCID: PMC9040877 DOI: 10.1128/mbio.01733-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The past decade illuminated the H2A-H2B acidic patch as a cornerstone for both nucleosome recognition and chromatin structure regulation. Higher-order folding of chromatin arrays is mediated by interactions of histone H4 tail with an adjacent nucleosome acidic patch. Dynamic chromatin folding ensures a proper regulation of nuclear functions fundamental to cellular homeostasis. Many cellular factors have been shown to act on chromatin by tethering nucleosomes via an arginine anchor binding to the acidic patch. This tethering mechanism has also been described for several viral proteins. In this minireview, we will discuss the structural basis for acidic patch engagement by viral proteins and the implications during respective viral infections. We will also discuss a model in which acidic patch occupancy by these non-self viral proteins alters the local chromatin state by preventing H4 tail-mediated higher-order chromatin folding.
Collapse
|
8
|
Peng Y, Li S, Onufriev A, Landsman D, Panchenko AR. Binding of regulatory proteins to nucleosomes is modulated by dynamic histone tails. Nat Commun 2021; 12:5280. [PMID: 34489435 PMCID: PMC8421395 DOI: 10.1038/s41467-021-25568-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
Little is known about the roles of histone tails in modulating nucleosomal DNA accessibility and its recognition by other macromolecules. Here we generate extensive atomic level conformational ensembles of histone tails in the context of the full nucleosome, totaling 65 microseconds of molecular dynamics simulations. We observe rapid conformational transitions between tail bound and unbound states, and characterize kinetic and thermodynamic properties of histone tail-DNA interactions. Different histone types exhibit distinct binding modes to specific DNA regions. Using a comprehensive set of experimental nucleosome complexes, we find that the majority of them target mutually exclusive regions with histone tails on nucleosomal/linker DNA around the super-helical locations ± 1, ± 2, and ± 7, and histone tails H3 and H4 contribute most to this process. These findings are explained within competitive binding and tail displacement models. Finally, we demonstrate the crosstalk between different histone tail post-translational modifications and mutations; those which change charge, suppress tail-DNA interactions and enhance histone tail dynamics and DNA accessibility. The intrinsic disorder of histone tails poses challenges in their characterization. Here the authors apply extensive molecular dynamics simulations of the full nucleosome to show reversible binding to DNA with specific binding modes of different types of histone tails, where charge-altering modifications suppress tail-DNA interactions and may boost interactions between nucleosomes and nucleosome-binding proteins.
Collapse
Affiliation(s)
- Yunhui Peng
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Shuxiang Li
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, ON, Canada
| | - Alexey Onufriev
- Physics Department, Virginia Tech, VA, USA.,Computer Science Department, Virginia Tech, VA, USA.,Center for Soft Matter and Biological Physics, Virginia Tech, VA, USA
| | - David Landsman
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
9
|
Lindroth AM, Park YJ, Matía V, Squatrito M. The mechanistic GEMMs of oncogenic histones. Hum Mol Genet 2021; 29:R226-R235. [PMID: 32639003 DOI: 10.1093/hmg/ddaa143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/28/2022] Open
Abstract
The last decade's progress unraveling the mutational landscape of all age groups of cancer has uncovered mutations in histones as vital contributors of tumorigenesis. Here we review three new aspects of oncogenic histones: first, the identification of additional histone mutations potentially contributing to cancer formation; second, tumors expressing histone mutations to study the crosstalk of post-translational modifications, and; third, development of sophisticated biological model systems to reproduce tumorigenesis. At the outset, we recapitulate the firstly discovered histone mutations in pediatric and adolescent tumors of the brain and bone, which still remain the most pronounced histone alterations in cancer. We branch out to discuss the ramifications of histone mutations, including novel ones, that stem from altered protein-protein interactions of cognate histone modifiers as well as the stability of the nucleosome. We close by discussing animal models of oncogenic histones that reproduce tumor formation molecularly and morphologically and the prospect of utilizing them for drug testing, leading to efficient treatment and cure of deadly cancers with histone mutations.
Collapse
Affiliation(s)
- Anders M Lindroth
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si 10408, Republic of Korea
| | - Yoon Jung Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Verónica Matía
- Seve Ballesteros Foundation Brain Tumor Group, Molecular Oncology Program, Spanish National Cancer Research Center, CNIO, 28029 Madrid, Spain
| | - Massimo Squatrito
- Seve Ballesteros Foundation Brain Tumor Group, Molecular Oncology Program, Spanish National Cancer Research Center, CNIO, 28029 Madrid, Spain
| |
Collapse
|
10
|
Bjarnason S, Ruidiaz SF, McIvor J, Mercadante D, Heidarsson PO. Protein intrinsic disorder on a dynamic nucleosomal landscape. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:295-354. [PMID: 34656332 DOI: 10.1016/bs.pmbts.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The complex nucleoprotein landscape of the eukaryotic cell nucleus is rich in dynamic proteins that lack a stable three-dimensional structure. Many of these intrinsically disordered proteins operate directly on the first fundamental level of genome compaction: the nucleosome. Here we give an overview of how disordered interactions with and within nucleosomes shape the dynamics, architecture, and epigenetic regulation of the genetic material, controlling cellular transcription patterns. We highlight experimental and computational challenges in the study of protein disorder and illustrate how integrative approaches are increasingly unveiling the fine details of nuclear interaction networks. We finally dissect sequence properties encoded in disordered regions and assess common features of disordered nucleosome-binding proteins. As drivers of many critical biological processes, disordered proteins are integral to a comprehensive molecular view of the dynamic nuclear milieu.
Collapse
Affiliation(s)
- Sveinn Bjarnason
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland
| | - Sarah F Ruidiaz
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland
| | - Jordan McIvor
- School of Chemical Science, University of Auckland, Auckland, New Zealand
| | - Davide Mercadante
- School of Chemical Science, University of Auckland, Auckland, New Zealand.
| | - Pétur O Heidarsson
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland.
| |
Collapse
|
11
|
Farr SE, Woods EJ, Joseph JA, Garaizar A, Collepardo-Guevara R. Nucleosome plasticity is a critical element of chromatin liquid-liquid phase separation and multivalent nucleosome interactions. Nat Commun 2021; 12:2883. [PMID: 34001913 PMCID: PMC8129070 DOI: 10.1038/s41467-021-23090-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) is an important mechanism that helps explain the membraneless compartmentalization of the nucleus. Because chromatin compaction and LLPS are collective phenomena, linking their modulation to the physicochemical features of nucleosomes is challenging. Here, we develop an advanced multiscale chromatin model-integrating atomistic representations, a chemically-specific coarse-grained model, and a minimal model-to resolve individual nucleosomes within sub-Mb chromatin domains and phase-separated systems. To overcome the difficulty of sampling chromatin at high resolution, we devise a transferable enhanced-sampling Debye-length replica-exchange molecular dynamics approach. We find that nucleosome thermal fluctuations become significant at physiological salt concentrations and destabilize the 30-nm fiber. Our simulations show that nucleosome breathing favors stochastic folding of chromatin and promotes LLPS by simultaneously boosting the transient nature and heterogeneity of nucleosome-nucleosome contacts, and the effective nucleosome valency. Our work puts forward the intrinsic plasticity of nucleosomes as a key element in the liquid-like behavior of nucleosomes within chromatin, and the regulation of chromatin LLPS.
Collapse
Affiliation(s)
- Stephen E Farr
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Esmae J Woods
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Jerelle A Joseph
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Adiran Garaizar
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- Department of Genetics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Peng Y, Li S, Landsman D, Panchenko AR. Histone tails as signaling antennas of chromatin. Curr Opin Struct Biol 2021; 67:153-160. [PMID: 33279866 PMCID: PMC8096652 DOI: 10.1016/j.sbi.2020.10.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/07/2020] [Accepted: 10/18/2020] [Indexed: 12/19/2022]
Abstract
Histone tails, representing the N-terminal or C-terminal regions flanking the histone core, play essential roles in chromatin signaling networks. Intrinsic disorder of histone tails and their propensity for post-translational modifications allow them to serve as hubs in coordination of epigenetic processes within the nucleosomal context. Deposition of histone variants with distinct histone tail properties further enriches histone tails' repertoire in epigenetic signaling. Given the advances in experimental techniques and in silico modelling, we review the most recent data on histone tails' effects on nucleosome stability and dynamics, their function in regulating chromatin accessibility and folding. Finally, we discuss different molecular mechanisms to understand how histone tails are involved in nucleosome recognition by binding partners and formation of higher-order chromatin structures.
Collapse
Affiliation(s)
- Yunhui Peng
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Shuxiang Li
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, ON, Canada
| | - David Landsman
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, ON, Canada.
| |
Collapse
|
13
|
Espiritu D, Gribkova AK, Gupta S, Shaytan AK, Panchenko AR. Molecular Mechanisms of Oncogenesis through the Lens of Nucleosomes and Histones. J Phys Chem B 2021; 125:3963-3976. [PMID: 33769808 DOI: 10.1021/acs.jpcb.1c00694] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At the cellular level, cancer is the disease of both the genome and the epigenome, and the interplay between genetic mutations and epigenetic states may occur at the level of elementary chromatin units, the nucleosomes. They are formed by a segment of DNA wrapped around an octamer of histone proteins. In this review, we survey various mechanisms of cancer etiology and progression mediated by histones and nucleosomes. In particular, we discuss the effects of mutations in histones, changes in their expression and slicing on epigenetic dysregulation and carcinogenesis. The links between cancer phenotypes and differential expression of histone variants and isoforms are summarized. Finally, we discourse the geometric and steric effects of DNA compaction in nucleosomes on DNA mutation rate, interactions with transcription factors, including pioneer transcription factors, and prospects of cancer cells' genome and epigenome editing.
Collapse
Affiliation(s)
- Daniel Espiritu
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Anna K Gribkova
- Department of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119991, Russia.,Sirius University of Science and Technology, 1 Olympic Avenue, Sochi, 354340, Russia
| | - Shubhangi Gupta
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Alexey K Shaytan
- Department of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119991, Russia.,Sirius University of Science and Technology, 1 Olympic Avenue, Sochi, 354340, Russia.,Bioinformatics Lab, Faculty of Computer Science, HSE University, 11 Pokrovsky Boulevard, Moscow, 109028, Russia
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, Ontario, Canada.,Ontario Institute of Cancer Research, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Rabdano SO, Shannon MD, Izmailov SA, Gonzalez Salguero N, Zandian M, Purusottam RN, Poirier MG, Skrynnikov NR, Jaroniec CP. Histone H4 Tails in Nucleosomes: a Fuzzy Interaction with DNA. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sevastyan O. Rabdano
- Laboratory of Biomolecular NMR St. Petersburg State University St. Petersburg 199034 Russian Federation
| | - Matthew D. Shannon
- Department of Chemistry and Biochemistry The Ohio State University Columbus OH 43210 USA
| | - Sergei A. Izmailov
- Laboratory of Biomolecular NMR St. Petersburg State University St. Petersburg 199034 Russian Federation
| | | | - Mohamad Zandian
- Department of Chemistry and Biochemistry The Ohio State University Columbus OH 43210 USA
| | - Rudra N. Purusottam
- Department of Chemistry and Biochemistry The Ohio State University Columbus OH 43210 USA
| | | | - Nikolai R. Skrynnikov
- Laboratory of Biomolecular NMR St. Petersburg State University St. Petersburg 199034 Russian Federation
- Department of Chemistry Purdue University West Lafayette IN 47906 USA
| | | |
Collapse
|
15
|
Woods DC, Rodríguez-Ropero F, Wereszczynski J. The Dynamic Influence of Linker Histone Saturation within the Poly-Nucleosome Array. J Mol Biol 2021; 433:166902. [PMID: 33667509 DOI: 10.1016/j.jmb.2021.166902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 02/08/2023]
Abstract
Linker histones bind to nucleosomes and modify chromatin structure and dynamics as a means of epigenetic regulation. Biophysical studies have shown that chromatin fibers can adopt a plethora of conformations with varying levels of compaction. Linker histone condensation, and its specific binding disposition, has been associated with directly tuning this ensemble of states. However, the atomistic dynamics and quantification of this mechanism remains poorly understood. Here, we present molecular dynamics simulations of octa-nucleosome arrays, based on a cryo-EM structure of the 30-nm chromatin fiber, with and without the globular domains of the H1 linker histone to determine how they influence fiber structures and dynamics. Results show that when bound, linker histones inhibit DNA flexibility and stabilize repeating tetra-nucleosomal units, giving rise to increased chromatin compaction. Furthermore, upon the removal of H1, there is a significant destabilization of this compact structure as the fiber adopts less strained and untwisted states. Interestingly, linker DNA sampling in the octa-nucleosome is exaggerated compared to its mono-nucleosome counterparts, suggesting that chromatin architecture plays a significant role in DNA strain even in the absence of linker histones. Moreover, H1-bound states are shown to have increased stiffness within tetra-nucleosomes, but not between them. This increased stiffness leads to stronger long-range correlations within the fiber, which may result in the propagation of epigenetic signals over longer spatial ranges. These simulations highlight the effects of linker histone binding on the internal dynamics and global structure of poly-nucleosome arrays, while providing physical insight into a mechanism of chromatin compaction.
Collapse
Affiliation(s)
- Dustin C Woods
- Department of Chemistry and the Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL 60616, United States
| | - Francisco Rodríguez-Ropero
- Department of Physics and the Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL 60616, United States
| | - Jeff Wereszczynski
- Department of Physics and the Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL 60616, United States.
| |
Collapse
|
16
|
Rabdano SO, Shannon MD, Izmailov SA, Gonzalez Salguero N, Zandian M, Purusottam RN, Poirier MG, Skrynnikov NR, Jaroniec CP. Histone H4 Tails in Nucleosomes: a Fuzzy Interaction with DNA. Angew Chem Int Ed Engl 2021; 60:6480-6487. [PMID: 33522067 DOI: 10.1002/anie.202012046] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/15/2020] [Indexed: 12/21/2022]
Abstract
The interaction of positively charged N-terminal histone tails with nucleosomal DNA plays an important role in chromatin assembly and regulation, modulating their susceptibility to post-translational modifications and recognition by chromatin-binding proteins. Here, we report residue-specific 15 N NMR relaxation rates for histone H4 tails in reconstituted nucleosomes. These data indicate that H4 tails are strongly dynamically disordered, albeit with reduced conformational flexibility compared to a free peptide with the same sequence. Remarkably, the NMR observables were successfully reproduced in a 2-μs MD trajectory of the nucleosome. This is an important step toward resolving an apparent inconsistency where prior simulations were generally at odds with experimental evidence on conformational dynamics of histone tails. Our findings indicate that histone H4 tails engage in a fuzzy interaction with nucleosomal DNA, underpinned by a variable pattern of short-lived salt bridges and hydrogen bonds, which persists at low ionic strength (0-100 mM NaCl).
Collapse
Affiliation(s)
- Sevastyan O Rabdano
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, 199034, Russian Federation
| | - Matthew D Shannon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Sergei A Izmailov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, 199034, Russian Federation
| | | | - Mohamad Zandian
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Rudra N Purusottam
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Michael G Poirier
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Nikolai R Skrynnikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg, 199034, Russian Federation.,Department of Chemistry, Purdue University, West Lafayette, IN, 47906, USA
| | - Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
17
|
Ghoneim M, Fuchs HA, Musselman CA. Histone Tail Conformations: A Fuzzy Affair with DNA. Trends Biochem Sci 2021; 46:564-578. [PMID: 33551235 DOI: 10.1016/j.tibs.2020.12.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022]
Abstract
The core histone tails are critical in chromatin structure and signaling. Studies over the past several decades have provided a wealth of information on the histone tails and their interaction with chromatin factors. However, the conformation of the histone tails in a chromatin relevant context has remained elusive. Only recently has enough evidence emerged to start to build a structural model of the tails in the context of nucleosomes and nucleosome arrays. Here, we review these studies and propose that the histone tails adopt a high-affinity fuzzy complex with DNA, characterized by robust but dynamic association. Furthermore, we discuss how these DNA-bound conformational ensembles promote distinct chromatin structure and signaling, and that their fuzzy nature is important in transitioning between functional states.
Collapse
Affiliation(s)
- Mohamed Ghoneim
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Harrison A Fuchs
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Catherine A Musselman
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
18
|
Peng Y, Markov Y, Goncearenco A, Landsman D, Panchenko AR. Human Histone Interaction Networks: An Old Concept, New Trends. J Mol Biol 2020; 433:166684. [PMID: 33098859 DOI: 10.1016/j.jmb.2020.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022]
Abstract
To elucidate the properties of human histone interactions on the large scale, we perform a comprehensive mapping of human histone interaction networks by using data from structural, chemical cross-linking and various high-throughput studies. Histone interactomes derived from different data sources show limited overlap and complement each other. It inspires us to integrate these data into the combined histone global interaction network which includes 5308 proteins and 10,330 interactions. The analysis of topological properties of the human histone interactome reveals its scale free behavior and high modularity. Our study of histone binding interfaces uncovers a remarkably high number of residues involved in interactions between histones and non-histone proteins, 80-90% of residues in histones H3 and H4 have at least one binding partner. Two types of histone binding modes are detected: interfaces conserved in most histone variants and variant specific interfaces. Finally, different types of chromatin factors recognize histones in nucleosomes via distinct binding modes, and many of these interfaces utilize acidic patches among other sites. Interaction networks are available at https://github.com/Panchenko-Lab/Human-histone-interactome.
Collapse
Affiliation(s)
- Yunhui Peng
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yaroslav Markov
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA; Computational Biology and Bioinformatics, Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT 06520, USA
| | - Alexander Goncearenco
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA; VantAI, New York, NY 10003, USA
| | - David Landsman
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA.
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, ON K7L 3N6, Canada.
| |
Collapse
|
19
|
Sundaram R, Vasudevan D. Structural Basis of Nucleosome Recognition and Modulation. Bioessays 2020; 42:e1900234. [DOI: 10.1002/bies.201900234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 05/05/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Rajivgandhi Sundaram
- Laboratory of Macromolecular Crystallography Institute of Life Sciences Bhubaneswar 751023 India
- Manipal Academy of Higher Education Manipal 576104 India
| | - Dileep Vasudevan
- Laboratory of Macromolecular Crystallography Institute of Life Sciences Bhubaneswar 751023 India
| |
Collapse
|
20
|
Takada S, Brandani GB, Tan C. Nucleosomes as allosteric scaffolds for genetic regulation. Curr Opin Struct Biol 2020; 62:93-101. [PMID: 31901887 DOI: 10.1016/j.sbi.2019.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Nucleosomes are stable yet highly dynamic complexes exhibiting diverse types of motions, such as sliding, DNA unwrapping, and disassembly, encoding a landscape with a large number of metastable states. In this review, describing recent studies on these nucleosome structure changes, we propose that the nucleosome can be viewed as an ideal allosteric scaffold: regulated by effector molecules such as transcription factors and chromatin remodelers, the nucleosome controls the downstream gene activity. Binding of transcription factors to the nucleosome can enhance DNA unwrapping or slide the DNA, altering either the binding or the unbinding of other transcription factors to nearby sites. ATP-dependent chromatin remodelers induce a series of DNA deformations, which allosterically propagate throughout the nucleosome to induce DNA sliding or histone exchange.
Collapse
Affiliation(s)
- Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo Kyoto, 606-8502, Japan.
| | - Giovanni B Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo Kyoto, 606-8502, Japan
| | - Cheng Tan
- RIKEN Center for Computational Science, 7-1-26 Minatojima-minamimachi, Chuo, Kobe, 650-0047 Japan
| |
Collapse
|