1
|
Liang J, Tian J, Zhang H, Li H, Chen L. Proteomics: An In-Depth Review on Recent Technical Advances and Their Applications in Biomedicine. Med Res Rev 2025. [PMID: 39789883 DOI: 10.1002/med.22098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
Proteins hold pivotal importance since many diseases manifest changes in protein activity. Proteomics techniques provide a comprehensive exploration of protein structure, abundance, and function in biological samples, enabling the holistic characterization of overall changes in organisms. Nowadays, the breadth of emerging methodologies in proteomics is unprecedentedly vast, with constant optimization of technologies in sample processing, data collection, data analysis, and its scope of application is steadily transitioning from the bench to the clinic. Here, we offer an insightful review of the technical developments in proteomics and its applications in biomedicine over the past 5 years. We focus on its profound contributions in profiling disease spectra, discovering new biomarkers, identifying promising drug targets, deciphering alterations in protein conformation, and unearthing protein-protein interactions. Moreover, we summarize the cutting-edge technologies and potential breakthroughs in the proteomics pipeline and provide the principal challenges in proteomics. Based on these, we aspire to broaden the applicability of proteomics and inspire researchers to enhance our understanding of complex biological systems by utilizing such techniques.
Collapse
Affiliation(s)
- Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Jundan Tian
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Huadong Zhang
- College of Pharmacy, Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- College of Pharmacy, Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
2
|
Lee PY, Osman J, Low TY. Immunoaffinity Depletion of High-Abundance Proteins from Serum/Plasma for Proteomic Analysis. Methods Mol Biol 2025; 2884:1-12. [PMID: 39715993 DOI: 10.1007/978-1-0716-4298-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Mass spectrometry-based proteomics is widely applied to human blood serum or plasma in the search of biomarkers for various diseases. However, the enormous complexity and dynamic range of protein concentrations in these samples render a significant analytical challenge, particularly for detecting low-abundance candidate biomarkers. As a result, strategies for enriching low-abundance proteins and improving their identification in serum or plasma proteomics are commonly used. Here, we describe an immunodepletion technique that is routinely used in our lab for removing high-abundance proteins from human serum/plasma.
Collapse
Affiliation(s)
- Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Junaida Osman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Gurazada SGR, Kennedy HM, Braatz RD, Mehrman SJ, Polson SW, Rombel IT. HEK-omics: The promise of omics to optimize HEK293 for recombinant adeno-associated virus (rAAV) gene therapy manufacturing. Biotechnol Adv 2024:108506. [PMID: 39708987 DOI: 10.1016/j.biotechadv.2024.108506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/14/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Gene therapy is poised to transition from niche to mainstream medicine, with recombinant adeno-associated virus (rAAV) as the vector of choice. However, robust, scalable, industrialized production is required to meet demand and provide affordable patient access, which has not yet materialized. Closing the chasm between demand and supply requires innovation in biomanufacturing to achieve the essential step change in rAAV product yield and quality. Omics provides a rich source of mechanistic knowledge that can be applied to HEK293, the most commonly used cell line for rAAV production. In this review, the findings from a growing number of diverse studies that apply genomics, epigenomics, transcriptomics, proteomics, and metabolomics to HEK293 bioproduction are explored. Learnings from CHO-Omics, application of omics approaches to improve CHO bioproduction, provide a framework to explore the potential of "HEK-Omics" as a multi-omics-informed approach providing actionable mechanistic insights for improved transient and stable production of rAAV and other recombinant products in HEK293.
Collapse
Affiliation(s)
- Sai Guna Ranjan Gurazada
- Center for Bioinformatics and Computational Biology, Department of Computer and Information Sciences, University of Delaware, Newark, DE, United States
| | | | - Richard D Braatz
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Steven J Mehrman
- Janssen Research & Development, Janssen Pharmaceuticals, Johnson & Johnston, Malvern, PA, United States
| | - Shawn W Polson
- Center for Bioinformatics and Computational Biology, Department of Computer and Information Sciences, University of Delaware, Newark, DE, United States.
| | | |
Collapse
|
4
|
Qian X, Yao M, Xu J, Dong N, Chen S. From cancer therapy to cardiac safety: the role of proteostasis in drug-induced cardiotoxicity. Front Pharmacol 2024; 15:1472387. [PMID: 39611175 PMCID: PMC11602306 DOI: 10.3389/fphar.2024.1472387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024] Open
Abstract
Drug-induced cardiotoxicity (DICT) poses a significant challenge in the prognosis of cancer patients, particularly with the use of antineoplastic agents like anthracyclines and targeted therapies such as trastuzumab. This review delves into the intricate interplay between drugs and proteins within cardiac cells, focusing on the role of proteostasis as a therapeutic target for mitigating cardiotoxicity. We explore the in vivo modeling of proteostasis, highlighting the complex intracellular environment and the emerging techniques for monitoring proteostasis. Additionally, we discuss how cardiotoxic drugs disrupt protein homeostasis through direct chemical denaturation, endoplasmic reticulum stress, unfolded protein response, chaperone dysfunction, impairment of the proteasome system, and dysregulation of autophagy. Finally, we provide insights into the applications of cardioprotective drugs targeting proteostasis to prevent cardiotoxicity and the adoption of structural proteomics to evaluate potential cardiotoxicity. By gaining a deeper understanding of the role of proteostasis underlying DICT, we can pave the way for the development of targeted therapeutic strategies to safeguard cardiac function while maximizing the therapeutic potential of antineoplastic drugs.
Collapse
Affiliation(s)
- Xingyu Qian
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengdong Yao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingyu Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Si Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
5
|
Bains AK, Naba A. Proteomic insights into the extracellular matrix: a focus on proteoforms and their implications in health and disease. Expert Rev Proteomics 2024; 21:463-481. [PMID: 39512072 PMCID: PMC11602344 DOI: 10.1080/14789450.2024.2427136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024]
Abstract
INTRODUCTION The extracellular matrix (ECM) is a highly organized and dynamic network of proteins and glycosaminoglycans that provides critical structural, mechanical, and biochemical support to cells. The functions of the ECM are directly influenced by the conformation of the proteins that compose it. ECM proteoforms, which can result from genetic, transcriptional, and/or post-translational modifications, adopt different conformations and, consequently, confer different structural properties and functionalities to the ECM in both physiological and pathological contexts. AREAS COVERED In this review, we discuss how bottom-up proteomics has been applied to identify, map, and quantify post-translational modifications (e.g. additions of chemical groups, proteolytic cleavage, or cross-links) and ECM proteoforms arising from alternative splicing or genetic variants. We further illustrate how proteoform-level information can be leveraged to gain novel insights into ECM protein structure and ECM functions in health and disease. EXPERT OPINION In the Expert opinion section, we discuss remaining challenges and opportunities with an emphasis on the importance of devising experimental and computational methods tailored to account for the unique biochemical properties of ECM proteins with the goal of increasing sequence coverage and, hence, accurate ECM proteoform identification.
Collapse
Affiliation(s)
- Amanpreet Kaur Bains
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
6
|
Son A, Kim H, Diedrich JK, Bamberger C, McClatchy DB, Lipton SA, Yates JR. Using in vivo intact structure for system-wide quantitative analysis of changes in proteins. Nat Commun 2024; 15:9310. [PMID: 39468068 PMCID: PMC11519357 DOI: 10.1038/s41467-024-53582-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Mass spectrometry-based methods can provide a global expression profile and structural readout of proteins in complex systems. Preserving the in vivo conformation of proteins in their innate state is challenging during proteomic experiments. Here, we introduce a whole animal in vivo protein footprinting method using perfusion of reagents to add dimethyl labels to exposed lysine residues on intact proteins which provides information about protein conformation. When this approach is used to measure dynamic structural changes during Alzheimer's disease (AD) progression in a mouse model, we detect 433 proteins that undergo structural changes attributed to AD, independent of aging, across 7 tissues. We identify structural changes of co-expressed proteins and link the communities of these proteins to their biological functions. Our findings show that structural alterations of proteins precede changes in expression, thereby demonstrating the value of in vivo protein conformation measurement. Our method represents a strategy for untangling mechanisms of proteostasis dysfunction caused by protein misfolding. In vivo whole-animal footprinting should have broad applicability for discovering conformational changes in systemic diseases and for the design of therapeutic interventions.
Collapse
Affiliation(s)
- Ahrum Son
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Hyunsoo Kim
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Casimir Bamberger
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Daniel B McClatchy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Stuart A Lipton
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neurosciences School of Medicine University of California, San Diego, La Jolla, CA, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
7
|
Frey L, Ghosh D, Qureshi BM, Rhyner D, Guerrero-Ferreira R, Pokharna A, Kwiatkowski W, Serdiuk T, Picotti P, Riek R, Greenwald J. On the pH-dependence of α-synuclein amyloid polymorphism and the role of secondary nucleation in seed-based amyloid propagation. eLife 2024; 12:RP93562. [PMID: 39196271 PMCID: PMC11357353 DOI: 10.7554/elife.93562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
The aggregation of the protein α-synuclein is closely associated with several neurodegenerative disorders and as such the structures of the amyloid fibril aggregates have high scientific and medical significance. However, there are dozens of unique atomic-resolution structures of these aggregates, and such a highly polymorphic nature of the α-synuclein fibrils hampers efforts in disease-relevant in vitro studies on α-synuclein amyloid aggregation. In order to better understand the factors that affect polymorph selection, we studied the structures of α-synuclein fibrils in vitro as a function of pH and buffer using cryo-EM helical reconstruction. We find that in the physiological range of pH 5.8-7.4, a pH-dependent selection between Type 1, 2, and 3 polymorphs occurs. Our results indicate that even in the presence of seeds, the polymorph selection during aggregation is highly dependent on the buffer conditions, attributed to the non-polymorph-specific nature of secondary nucleation. We also uncovered two new polymorphs that occur at pH 7.0 in phosphate-buffered saline. The first is a monofilament Type 1 fibril that highly resembles the structure of the juvenile-onset synucleinopathy polymorph found in patient-derived material. The second is a new Type 5 polymorph that resembles a polymorph that has been recently reported in a study that used diseased tissues to seed aggregation. Taken together, our results highlight the shallow amyloid energy hypersurface that can be altered by subtle changes in the environment, including the pH which is shown to play a major role in polymorph selection and in many cases appears to be the determining factor in seeded aggregation. The results also suggest the possibility of producing disease-relevant structure in vitro.
Collapse
Affiliation(s)
- Lukas Frey
- Institute of Molecular Physical ScienceZürichSwitzerland
| | - Dhiman Ghosh
- Institute of Molecular Physical ScienceZürichSwitzerland
| | - Bilal M Qureshi
- Scientific Center for Optical and Electron MicroscopyZürichSwitzerland
| | - David Rhyner
- Institute of Molecular Physical ScienceZürichSwitzerland
| | | | | | | | - Tetiana Serdiuk
- Institute of Molecular Systems Biology, ETH ZürichZurichSwitzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, ETH ZürichZurichSwitzerland
| | - Roland Riek
- Institute of Molecular Physical ScienceZürichSwitzerland
| | | |
Collapse
|
8
|
Liu H, Yan P, Zhang Z, Han H, Zhou Q, Zheng J, Zhang J, Xu F, Shui W. Structural Mass Spectrometry Captures Residue-Resolved Comprehensive Conformational Rearrangements of a G Protein-Coupled Receptor. J Am Chem Soc 2024; 146:20045-20058. [PMID: 39001877 DOI: 10.1021/jacs.4c03922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
G protein-coupled receptor (GPCR) structural studies with in-solution spectroscopic approaches have offered distinctive insights into GPCR activation and signaling that highly complement those yielded from structural snapshots by crystallography or cryo-EM. While most current spectroscopic approaches allow for probing structural changes at selected residues or loop regions, they are not suitable for capturing a holistic view of GPCR conformational rearrangements across multiple domains. Herein, we develop an approach based on limited proteolysis mass spectrometry (LiP-MS) to simultaneously monitor conformational alterations of a large number of residues spanning both flexible loops and structured transmembrane domains for a given GPCR. To benchmark LiP-MS for GPCR conformational profiling, we studied the adenosine 2A receptor (A2AR) in response to different ligand binding (agonist/antagonist/allosteric modulators) and G protein coupling. Systematic and residue-resolved profiling of A2AR conformational rearrangements by LiP-MS precisely captures structural mechanisms in multiple domains underlying ligand engagement, receptor activation, and allostery, and may also reflect local conformational flexibility. Furthermore, these residue-resolution structural fingerprints of the A2AR protein allow us to readily classify ligands of different pharmacology and distinguish the G protein-coupled state. Thus, our study provides a new structural MS approach that would be generalizable to characterizing conformational transition and plasticity for challenging integral membrane proteins.
Collapse
Affiliation(s)
- Hongyue Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Yan
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoyu Zhang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbo Han
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jie Zheng
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Zhang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fei Xu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
9
|
Veth TS, Kannegieter NM, de Graaf EL, Ruijtenbeek R, Joore J, Ressa A, Altelaar M. Innovative strategies for measuring kinase activity to accelerate the next wave of novel kinase inhibitors. Drug Discov Today 2024; 29:103907. [PMID: 38301799 DOI: 10.1016/j.drudis.2024.103907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
The development of protein kinase inhibitors (PKIs) has gained significance owing to their therapeutic potential for diseases like cancer. In addition, there has been a rise in refining kinase activity assays, each possessing unique biological and analytical characteristics crucial for PKI development. However, the PKI development pipeline experiences high attrition rates and approved PKIs exhibit unexploited potential because of variable patient responses. Enhancing PKI development efficiency involves addressing challenges related to understanding the PKI mechanism of action and employing biomarkers for precision medicine. Selecting appropriate kinase activity assays for these challenges can overcome these attrition rate issues. This review delves into the current obstacles in kinase inhibitor development and elucidates kinase activity assays that can provide solutions.
Collapse
Affiliation(s)
- Tim S Veth
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | | | - Erik L de Graaf
- Pepscope, Nieuwe Kanaal 7, 6709 PA Wageningen, The Netherlands
| | | | - Jos Joore
- Pepscope, Nieuwe Kanaal 7, 6709 PA Wageningen, The Netherlands
| | - Anna Ressa
- Pepscope, Nieuwe Kanaal 7, 6709 PA Wageningen, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands.
| |
Collapse
|
10
|
Kleizen B, de Mattos E, Papaioannou O, Monti M, Tartaglia GG, van der Sluijs P, Braakman I. Transmembrane Helices 7 and 8 Confer Aggregation Sensitivity to the Cystic Fibrosis Transmembrane Conductance Regulator. Int J Mol Sci 2023; 24:15741. [PMID: 37958724 PMCID: PMC10648718 DOI: 10.3390/ijms242115741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a large multi-spanning membrane protein that is susceptible to misfolding and aggregation. We have identified here the region responsible for this instability. Temperature-induced aggregation of C-terminally truncated versions of CFTR demonstrated that all truncations up to the second transmembrane domain (TMD2), including the R region, largely resisted aggregation. Limited proteolysis identified a folded structure that was prone to aggregation and consisted of TMD2 and at least part of the Regulatory Region R. Only when both TM7 (TransMembrane helix 7) and TM8 were present, TMD2 fragments became as aggregation-sensitive as wild-type CFTR, in line with increased thermo-instability of late CFTR nascent chains and in silico prediction of aggregation propensity. In accord, isolated TMD2 was degraded faster in cells than isolated TMD1. We conclude that TMD2 extended at its N-terminus with part of the R region forms a protease-resistant structure that induces heat instability in CFTR and may be responsible for its limited intracellular stability.
Collapse
Affiliation(s)
- Bertrand Kleizen
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| | - Eduardo de Mattos
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| | - Olga Papaioannou
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| | - Michele Monti
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (M.M.); (G.G.T.)
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), 16152 Genoa, Italy
| | - Gian Gaetano Tartaglia
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy; (M.M.); (G.G.T.)
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), 16152 Genoa, Italy
| | - Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| | - Ineke Braakman
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; (B.K.); (E.d.M.); (O.P.); (P.v.d.S.)
| |
Collapse
|
11
|
Kang J, Seshadri M, Cupp-Sutton KA, Wu S. Toward the analysis of functional proteoforms using mass spectrometry-based stability proteomics. FRONTIERS IN ANALYTICAL SCIENCE 2023; 3:1186623. [PMID: 39072225 PMCID: PMC11281393 DOI: 10.3389/frans.2023.1186623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Functional proteomics aims to elucidate biological functions, mechanisms, and pathways of proteins and proteoforms at the molecular level to examine complex cellular systems and disease states. A series of stability proteomics methods have been developed to examine protein functionality by measuring the resistance of a protein to chemical or thermal denaturation or proteolysis. These methods can be applied to measure the thermal stability of thousands of proteins in complex biological samples such as cell lysate, intact cells, tissues, and other biological fluids to measure proteome stability. Stability proteomics methods have been popularly applied to observe stability shifts upon ligand binding for drug target identification. More recently, these methods have been applied to characterize the effect of structural changes in proteins such as those caused by post-translational modifications (PTMs) and mutations, which can affect protein structures or interactions and diversify protein functions. Here, we discussed the current application of a suite of stability proteomics methods, including thermal proteome profiling (TPP), stability of proteomics from rates of oxidation (SPROX), and limited proteolysis (LiP) methods, to observe PTM-induced structural changes on protein stability. We also discuss future perspectives highlighting the integration of top-down mass spectrometry and stability proteomics methods to characterize intact proteoform stability and understand the function of variable protein modifications.
Collapse
Affiliation(s)
- Ji Kang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Meena Seshadri
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Kellye A. Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
12
|
Son A, Kim H, Diedrich JK, Bamberger C, McClatchy DB, Yates JR. In vivo Protein Footprinting Reveals the Dynamic Conformational Changes of Proteome of Multiple Tissues in Progressing Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542496. [PMID: 37397995 PMCID: PMC10312442 DOI: 10.1101/2023.05.29.542496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Numerous studies have investigated changes in protein expression at the system level using proteomic mass spectrometry, but only recently have studies explored the structure of proteins at the proteome level. We developed covalent protein painting (CPP), a protein footprinting method that quantitatively labels exposed lysine, and have now extended the method to whole intact animals to measure surface accessibility as a surrogate of in vivo protein conformations. We investigated how protein structure and protein expression change as Alzheimer's disease (AD) progresses by conducting in vivo whole animal labeling of AD mice. This allowed us to analyze broadly protein accessibility in various organs over the course of AD. We observed that structural changes of proteins related to 'energy generation,' 'carbon metabolism,' and 'metal ion homeostasis' preceded expression changes in the brain. We found that proteins in certain pathways undergoing structural changes were significantly co-regulated in the brain, kidney, muscle, and spleen.
Collapse
|
13
|
Scott KA, Zhang TL, Xi SY, Ngo B, Vinogradova EV. Protein State‐Dependent Chemical Biology. Isr J Chem 2023. [DOI: 10.1002/ijch.202200101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Kevin A. Scott
- Department of Chemical Immunology and Proteomics Rockefeller University 1230 York Ave New York NY 10065 USA
| | - Tiffany L. Zhang
- Department of Chemical Immunology and Proteomics Rockefeller University 1230 York Ave New York NY 10065 USA
| | - Sarah Y. Xi
- Department of Chemistry Columbia University 3000 Broadway New York NY 10027 USA
| | - Bryan Ngo
- Department of Chemical Immunology and Proteomics Rockefeller University 1230 York Ave New York NY 10065 USA
- Memorial Sloan Kettering Cancer Center New York NY 10065 USA
| | - Ekaterina V. Vinogradova
- Department of Chemical Immunology and Proteomics Rockefeller University 1230 York Ave New York NY 10065 USA
| |
Collapse
|
14
|
Fröhlich F, Gerosa L, Muhlich J, Sorger PK. Mechanistic model of MAPK signaling reveals how allostery and rewiring contribute to drug resistance. Mol Syst Biol 2023; 19:e10988. [PMID: 36700386 PMCID: PMC9912026 DOI: 10.15252/msb.202210988] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 11/29/2022] [Accepted: 12/15/2022] [Indexed: 01/27/2023] Open
Abstract
BRAF is prototypical of oncogenes that can be targeted therapeutically and the treatment of BRAFV600E melanomas with RAF and MEK inhibitors results in rapid tumor regression. However, drug-induced rewiring generates a drug adapted state thought to be involved in acquired resistance and disease recurrence. In this article, we study mechanisms of adaptive rewiring in BRAFV600E melanoma cells using an energy-based implementation of ordinary differential equation (ODE) modeling in combination with proteomic, transcriptomic and imaging data. We develop a method for causal tracing of ODE models and identify two parallel MAPK reaction channels that are differentially sensitive to RAF and MEK inhibitors due to differences in protein oligomerization and drug binding. We describe how these channels, and timescale separation between immediate-early signaling and transcriptional feedback, create a state in which the RAS-regulated MAPK channel can be activated by growth factors under conditions in which the BRAFV600E -driven channel is fully inhibited. Further development of the approaches in this article is expected to yield a unified model of adaptive drug resistance in melanoma.
Collapse
Affiliation(s)
- Fabian Fröhlich
- Laboratory of Systems Pharmacology, Department of Systems BiologyHarvard Medical SchoolBostonMAUSA
| | - Luca Gerosa
- Laboratory of Systems Pharmacology, Department of Systems BiologyHarvard Medical SchoolBostonMAUSA,Present address:
Genentech, Inc.South San FranciscoCAUSA
| | - Jeremy Muhlich
- Laboratory of Systems Pharmacology, Department of Systems BiologyHarvard Medical SchoolBostonMAUSA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Department of Systems BiologyHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
15
|
The increasing role of structural proteomics in cyanobacteria. Essays Biochem 2022; 67:269-282. [PMID: 36503929 PMCID: PMC10070481 DOI: 10.1042/ebc20220095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
Abstract
Cyanobacteria, also known as blue–green algae, are ubiquitous organisms on the planet. They contain tremendous protein machineries that are of interest to the biotechnology industry and beyond. Recently, the number of annotated cyanobacterial genomes has expanded, enabling structural studies on known gene-coded proteins to accelerate. This review focuses on the advances in mass spectrometry (MS) that have enabled structural proteomics studies to be performed on the proteins and protein complexes within cyanobacteria. The review also showcases examples whereby MS has revealed critical mechanistic information behind how these remarkable machines within cyanobacteria function.
Collapse
|
16
|
Le Sueur C, Hammarén HM, Sridharan S, Savitski MM. Thermal proteome profiling: Insights into protein modifications, associations, and functions. Curr Opin Chem Biol 2022; 71:102225. [PMID: 36368297 DOI: 10.1016/j.cbpa.2022.102225] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/10/2022]
Abstract
Tracking proteins' biophysical characteristics on a proteome-wide scale can provide valuable information on their functions and interactions. Thermal proteome profiling (TPP) is a multiplexed quantitative proteomics approach that measures changes in protein thermal stability-a key biophysical property-across different cellular states. Developed in 2014, as a target-deconvolution assay for drugs and other small molecules, TPP has since evolved to a system-level biochemical omics technique providing insights into context-dependent changes in protein states. In this review, we summarise key advances in the experimental and data analysis pipeline that have aided this transformation and discuss the recent developments and applications of TPP.
Collapse
Affiliation(s)
- Cecile Le Sueur
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany; Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Henrik M Hammarén
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Sindhuja Sridharan
- Barts Brain Tumour Center, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Mikhail M Savitski
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany.
| |
Collapse
|
17
|
Chong L, Hsu CC, Zhu Y. Advances in mass spectrometry-based phosphoproteomics for elucidating abscisic acid signaling and plant responses to abiotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6547-6557. [PMID: 35959917 DOI: 10.1093/jxb/erac324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stresses have significant impacts on crop yield and quality. Even though significant efforts during the past decade have been devoted to uncovering the core signaling pathways associated with the phytohormone abscisic acid (ABA) and abiotic stress in plants, abiotic stress signaling mechanisms in most crops remain largely unclear. The core components of the ABA signaling pathway, including early events in the osmotic stress-induced phosphorylation network, have recently been elucidated in Arabidopsis with the aid of phosphoproteomics technologies. We now know that SNF1-related kinases 2 (SnRK2s) are not only inhibited by the clade A type 2C protein phosphatases (PP2Cs) through dephosphorylation, but also phosphorylated and activated by upstream mitogen-activated protein kinase kinase kinases (MAP3Ks). Through describing the course of studies to elucidate abiotic stress and ABA signaling, we will discuss how we can take advantage of the latest innovations in mass-spectrometry-based phosphoproteomics and structural proteomics to boost our investigation of plant regulation and responses to ABA and abiotic stress.
Collapse
Affiliation(s)
- Leelyn Chong
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Chuan-Chih Hsu
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Sanya Institute of Henan University, Sanya, Hainan, China
| |
Collapse
|
18
|
Santambrogio C, Ponzini E, Grandori R. Native mass spectrometry for the investigation of protein structural (dis)order. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140828. [PMID: 35926718 DOI: 10.1016/j.bbapap.2022.140828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/24/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
A central challenge in structural biology is represented by dynamic and heterogeneous systems, as typically represented by proteins in solution, with the extreme case of intrinsically disordered proteins (IDPs) [1-3]. These proteins lack a specific three-dimensional structure and have poorly organized secondary structure. For these reasons, they escape structural characterization by conventional biophysical methods. The investigation of these systems requires description of conformational ensembles, rather than of unique, defined structures or bundles of largely superimposable structures. Mass spectrometry (MS) has become a central tool in this field, offering a variety of complementary approaches to generate structural information on either folded or disordered proteins [4-6]. Two main categories of methods can be recognized. On one side, conformation-dependent reactions (such as cross-linking, covalent labeling, H/D exchange) are exploited to label molecules in solution, followed by the characterization of the labeling products by denaturing MS [7-11]. On the other side, non-denaturing ("native") MS can be used to directly explore the different conformational components in terms of geometry and structural compactness [12-16]. All these approaches have in common the capability to conjugate protein structure investigation with the peculiar analytical power of MS measurements, offering the possibility of assessing species distributions for folding and binding equilibria and the combination of both. These methods can be combined with characterization of noncovalent complexes [17, 18] and post-translational modifications [19-23]. This review focuses on the application of native MS to protein structure and dynamics investigation, with a general methodological section, followed by examples on specific proteins from our laboratory.
Collapse
Affiliation(s)
- Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Erika Ponzini
- Materials Science Department, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy; COMiB Research Center, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| |
Collapse
|
19
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
20
|
Yin K, Tong M, Sun F, Wu R. Quantitative Structural Proteomics Unveils the Conformational Changes of Proteins under the Endoplasmic Reticulum Stress. Anal Chem 2022; 94:13250-13260. [PMID: 36108266 PMCID: PMC9789690 DOI: 10.1021/acs.analchem.2c03076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein structures are decisive for their activities and interactions with other molecules. Global analysis of protein structures and conformational changes cannot be achieved by commonly used abundance-based proteomics. Here, we integrated cysteine covalent labeling, selective enrichment, and quantitative proteomics to study protein structures and structural changes on a large scale. This method was applied to globally investigate protein structures in HEK293T cells and protein structural changes in the cells with the tunicamycin (Tm)-induced endoplasmic reticulum (ER) stress. We quantified several thousand cysteine residues, which contain unprecedented and valuable information of protein structures. Combining this method with pulsed stable isotope labeling by amino acids in cell culture, we further analyzed the folding state differences between pre-existing and newly synthesized proteins in cells under the Tm treatment. Besides newly synthesized proteins, unexpectedly, many pre-existing proteins were found to become unfolded upon ER stress, especially those related to gene transcription and protein translation. Furthermore, the current results reveal that N-glycosylation plays a more important role in the folding process of the tertiary and quaternary structures than the secondary structures for newly synthesized proteins. Considering the importance of cysteine in protein structures, this method can be extensively applied in the biological and biomedical research fields.
Collapse
Affiliation(s)
- Kejun Yin
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ming Tong
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
21
|
Fedorov II, Lineva VI, Tarasova IA, Gorshkov MV. Mass Spectrometry-Based Chemical Proteomics for Drug Target Discoveries. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:983-994. [PMID: 36180990 DOI: 10.1134/s0006297922090103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/16/2023]
Abstract
Chemical proteomics, emerging rapidly in recent years, has become a main approach to identifying interactions between the small molecules and proteins in the cells on a proteome scale and mapping the signaling and/or metabolic pathways activated and regulated by these interactions. The methods of chemical proteomics allow not only identifying proteins targeted by drugs, characterizing their toxicity and discovering possible off-target proteins, but also elucidation of the fundamental mechanisms of cell functioning under conditions of drug exposure or due to the changes in physiological state of the organism itself. Solving these problems is essential for both basic research in biology and clinical practice, including approaches to early diagnosis of various forms of serious diseases or prediction of the effectiveness of therapeutic treatment. At the same time, recent developments in high-resolution mass spectrometry have provided the technology for searching the drug targets across the whole cell proteomes. This review provides a concise description of the main objectives and problems of mass spectrometry-based chemical proteomics, the methods and approaches to their solution, and examples of implementation of these methods in biomedical research.
Collapse
Affiliation(s)
- Ivan I Fedorov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
- Moscow Institute of Physics and Technology (National University), Dolgoprudny, Moscow Region, 141700, Russia
| | - Victoria I Lineva
- Moscow Institute of Physics and Technology (National University), Dolgoprudny, Moscow Region, 141700, Russia
| | - Irina A Tarasova
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Mikhail V Gorshkov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
22
|
Chong L, Zhu Y. Mass spectrometry-based proteomics for abiotic stress studies. TRENDS IN PLANT SCIENCE 2022; 27:729-730. [PMID: 35033454 DOI: 10.1016/j.tplants.2021.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Leelyn Chong
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China; Sanya Institute, Henan University, Sanya, 572025, China.
| |
Collapse
|
23
|
Wang S, Li Y, He L, Yang J, Fernie AR, Luo J. Natural variance at the interface of plant primary and specialized metabolism. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102201. [PMID: 35349968 DOI: 10.1016/j.pbi.2022.102201] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Plants produce a large number of diverse metabolites when they grow and develop as well as when they respond to the changing external environment. These are an important source of human nutrition and medicine. In this review we emphasized the major issues of the primary-specialized metabolic interface in plant metabolism, described the metabolic flow from primary to specialized metabolism, and the conservation and diversity of primary and specialized metabolites. At the same time, we summarized the regulatory mechanisms underpinning the dynamic balance primary and specialized metabolism based on multi-omics integration analysis, as well as the natural variation of primary and specialized metabolic pathways and genes during the plant evolution. Moreover, the discovery and optimization of the synthesis and regulation elements of various primary to specialized metabolic flows provide the possibility for precise modification and personalized customization of metabolic pathways, which will greatly promote the development of synthetic biology.
Collapse
Affiliation(s)
| | - Yan Li
- College of Tropical Crops, Hainan University, Haikou, China
| | - Liqiang He
- College of Tropical Crops, Hainan University, Haikou, China
| | - Jun Yang
- College of Tropical Crops, Hainan University, Haikou, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany.
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, China.
| |
Collapse
|
24
|
The Facile Strategy of Improving the Long-Term Stability of Highly Transparent Polyvinyl Chloride by Introducing Unsaturated Zn Oleate and Uracil Derivatives. MATERIALS 2022; 15:ma15072672. [PMID: 35408009 PMCID: PMC9000714 DOI: 10.3390/ma15072672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/13/2022] [Accepted: 04/02/2022] [Indexed: 01/27/2023]
Abstract
In order to improve the initial color and the long-term heat stability of super-transparent polyvinyl chloride (PVC), a series of composite heat stabilizers consisting of unsaturated Zn oleate and uracil derivatives have been designed in this paper. The uracil derivatives are 1,3-dimethyl-6-amino-uracil (DAU) and 6,6′-diamino-1,1′,3,3′-tetramethyl-5,5′-(ethylidene)bisuracil (OSU). The static thermal stability, dynamic thermal stability, and transparency were used to evaluate the properties of the stabilized transparent PVC sheets. The results indicate that the compatibility between the stabilizer and PVC was greatly enhanced by introducing an unsaturated long-chain Zn oleate and a long alkyl chain bisuracil derivative. Through the thermal discoloration test, the best ratio of DAU/zinc oleate (DAU/Zn) and OSU/zinc oleate (OSU/Zn) was determined to be 4:1, with a total amount of 3 phr in 100 phr PVC. It was verified that the combination of zinc oleate with uracil derivatives could improve the long-term thermal stability of PVC, and the DAU/Zn was better than that of the OSU/Zn. In addition, through the transmission/haze verification, adding a proper amount of epoxidized soybean oil (ESBO) and phosphite ester to the OSU/Zn system has a certain synergistic effect. The thermal stability and transparency of PVC can be remarkably enhanced.
Collapse
|
25
|
Integrated mass spectrometry-based multi-omics for elucidating mechanisms of bacterial virulence. Biochem Soc Trans 2021; 49:1905-1926. [PMID: 34374408 DOI: 10.1042/bst20191088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022]
Abstract
Despite being considered the simplest form of life, bacteria remain enigmatic, particularly in light of pathogenesis and evolving antimicrobial resistance. After three decades of genomics, we remain some way from understanding these organisms, and a substantial proportion of genes remain functionally unknown. Methodological advances, principally mass spectrometry (MS), are paving the way for parallel analysis of the proteome, metabolome and lipidome. Each provides a global, complementary assay, in addition to genomics, and the ability to better comprehend how pathogens respond to changes in their internal (e.g. mutation) and external environments consistent with infection-like conditions. Such responses include accessing necessary nutrients for survival in a hostile environment where co-colonizing bacteria and normal flora are acclimated to the prevailing conditions. Multi-omics can be harnessed across temporal and spatial (sub-cellular) dimensions to understand adaptation at the molecular level. Gene deletion libraries, in conjunction with large-scale approaches and evolving bioinformatics integration, will greatly facilitate next-generation vaccines and antimicrobial interventions by highlighting novel targets and pathogen-specific pathways. MS is also central in phenotypic characterization of surface biomolecules such as lipid A, as well as aiding in the determination of protein interactions and complexes. There is increasing evidence that bacteria are capable of widespread post-translational modification, including phosphorylation, glycosylation and acetylation; with each contributing to virulence. This review focuses on the bacterial genotype to phenotype transition and surveys the recent literature showing how the genome can be validated at the proteome, metabolome and lipidome levels to provide an integrated view of organism response to host conditions.
Collapse
|
26
|
Sun B, Lv J, Chen J, Liu Z, Zhou Y, Liu L, Jin Y, Wang F. Size-Selective VAILase Proteolysis Provides Dynamic Insights into Protein Structures. Anal Chem 2021; 93:10653-10660. [PMID: 34291915 DOI: 10.1021/acs.analchem.1c02042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Monitoring the dynamic alterations of protein structures within an aqueous solution remains enormously challenging. In this study, we describe a size-selective VAILase proteolysis (SVP)-mass spectrometry (MS) strategy to probe the protein structure changes without strict control of the proteolysis kinetics. The unique conformation selectivity of SVP depends on the uniform nano-sized entrance pores of the VAILase hexameric cage as well as the six inherent molecular rulers in the VAILase-substrate recognition and cleavage. The dynamic insights into subtle conformation alterations of both myoglobin unfolding transition and Aurora kinase A-inhibitor binding are successfully captured using the SVP strategy, which matches well with the results in the molecular dynamics simulation. Our work provides a new paradigm of size-selective native proteolysis for exploring the aqueous protein structure-function relationships.
Collapse
Affiliation(s)
- Binwen Sun
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Lv
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jin Chen
- Clinical Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ye Zhou
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lin Liu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yan Jin
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Chavez JD, Wippel HH, Tang X, Keller A, Bruce JE. In-Cell Labeling and Mass Spectrometry for Systems-Level Structural Biology. Chem Rev 2021; 122:7647-7689. [PMID: 34232610 PMCID: PMC8966414 DOI: 10.1021/acs.chemrev.1c00223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biological systems have evolved to utilize proteins to accomplish nearly all functional roles needed to sustain life. A majority of biological functions occur within the crowded environment inside cells and subcellular compartments where proteins exist in a densely packed complex network of protein-protein interactions. The structural biology field has experienced a renaissance with recent advances in crystallography, NMR, and CryoEM that now produce stunning models of large and complex structures previously unimaginable. Nevertheless, measurements of such structural detail within cellular environments remain elusive. This review will highlight how advances in mass spectrometry, chemical labeling, and informatics capabilities are merging to provide structural insights on proteins, complexes, and networks that exist inside cells. Because of the molecular detection specificity provided by mass spectrometry and proteomics, these approaches provide systems-level information that not only benefits from conventional structural analysis, but also is highly complementary. Although far from comprehensive in their current form, these approaches are currently providing systems structural biology information that can uniquely reveal how conformations and interactions involving many proteins change inside cells with perturbations such as disease, drug treatment, or phenotypic differences. With continued advancements and more widespread adaptation, systems structural biology based on in-cell labeling and mass spectrometry will provide an even greater wealth of structural knowledge.
Collapse
Affiliation(s)
- Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Helisa H Wippel
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Xiaoting Tang
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| |
Collapse
|
28
|
Lerner E, Barth A, Hendrix J, Ambrose B, Birkedal V, Blanchard SC, Börner R, Sung Chung H, Cordes T, Craggs TD, Deniz AA, Diao J, Fei J, Gonzalez RL, Gopich IV, Ha T, Hanke CA, Haran G, Hatzakis NS, Hohng S, Hong SC, Hugel T, Ingargiola A, Joo C, Kapanidis AN, Kim HD, Laurence T, Lee NK, Lee TH, Lemke EA, Margeat E, Michaelis J, Michalet X, Myong S, Nettels D, Peulen TO, Ploetz E, Razvag Y, Robb NC, Schuler B, Soleimaninejad H, Tang C, Vafabakhsh R, Lamb DC, Seidel CAM, Weiss S. FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. eLife 2021; 10:e60416. [PMID: 33779550 PMCID: PMC8007216 DOI: 10.7554/elife.60416] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.
Collapse
Affiliation(s)
- Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Anders Barth
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt UniversityDiepenbeekBelgium
| | - Benjamin Ambrose
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Victoria Birkedal
- Department of Chemistry and iNANO center, Aarhus UniversityAarhusDenmark
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research HospitalMemphisUnited States
| | - Richard Börner
- Laserinstitut HS Mittweida, University of Applied Science MittweidaMittweidaGermany
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany
| | - Timothy D Craggs
- Department of Chemistry, University of SheffieldSheffieldUnited Kingdom
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati School of MedicineCincinnatiUnited States
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology and The Institute for Biophysical Dynamics, University of ChicagoChicagoUnited States
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia UniversityNew YorkUnited States
| | - Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Howard Hughes Medical InstituteBaltimoreUnited States
| | - Christian A Hanke
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of ScienceRehovotIsrael
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Centre, University of CopenhagenCopenhagenDenmark
- Denmark Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National UniversitySeoulRepublic of Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science and Department of Physics, Korea UniversitySeoulRepublic of Korea
| | - Thorsten Hugel
- Institute of Physical Chemistry and Signalling Research Centres BIOSS and CIBSS, University of FreiburgFreiburgGermany
| | - Antonino Ingargiola
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of TechnologyDelftNetherlands
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of OxfordOxfordUnited Kingdom
| | - Harold D Kim
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Ted Laurence
- Physical and Life Sciences Directorate, Lawrence Livermore National LaboratoryLivermoreUnited States
| | - Nam Ki Lee
- School of Chemistry, Seoul National UniversitySeoulRepublic of Korea
| | - Tae-Hee Lee
- Department of Chemistry, Pennsylvania State UniversityUniversity ParkUnited States
| | - Edward A Lemke
- Departments of Biology and Chemistry, Johannes Gutenberg UniversityMainzGermany
- Institute of Molecular Biology (IMB)MainzGermany
| | - Emmanuel Margeat
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Universitié de MontpellierMontpellierFrance
| | | | - Xavier Michalet
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Sua Myong
- Department of Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| | - Daniel Nettels
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Thomas-Otavio Peulen
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Evelyn Ploetz
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Yair Razvag
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of JerusalemJerusalemIsrael
| | - Nicole C Robb
- Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Benjamin Schuler
- Department of Biochemistry and Department of Physics, University of ZurichZurichSwitzerland
| | - Hamid Soleimaninejad
- Biological Optical Microscopy Platform (BOMP), University of MelbourneParkvilleAustralia
| | - Chun Tang
- College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking UniversityBeijingChina
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-UniversitätMünchenGermany
| | - Claus AM Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-UniversitätDüsseldorfGermany
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los AngelesLos AngelesUnited States
- Department of Physiology, CaliforniaNanoSystems Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
29
|
Kulenkampff K, Wolf Perez AM, Sormanni P, Habchi J, Vendruscolo M. Quantifying misfolded protein oligomers as drug targets and biomarkers in Alzheimer and Parkinson diseases. Nat Rev Chem 2021; 5:277-294. [PMID: 37117282 DOI: 10.1038/s41570-021-00254-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
Protein misfolding and aggregation are characteristic of a wide range of neurodegenerative disorders, including Alzheimer and Parkinson diseases. A hallmark of these diseases is the aggregation of otherwise soluble and functional proteins into amyloid aggregates. Although for many decades such amyloid deposits have been thought to be responsible for disease progression, it is now increasingly recognized that the misfolded protein oligomers formed during aggregation are, instead, the main agents causing pathological processes. These oligomers are transient and heterogeneous, which makes it difficult to detect and quantify them, generating confusion about their exact role in disease. The lack of suitable methods to address these challenges has hampered efforts to investigate the molecular mechanisms of oligomer toxicity and to develop oligomer-based diagnostic and therapeutic tools to combat protein misfolding diseases. In this Review, we describe methods to quantify misfolded protein oligomers, with particular emphasis on diagnostic applications as disease biomarkers and on therapeutic applications as target biomarkers. The development of these methods is ongoing, and we discuss the challenges that remain to be addressed to establish measurement tools capable of overcoming existing limitations and to meet present needs.
Collapse
|
30
|
Hevler JF, Lukassen MV, Cabrera-Orefice A, Arnold S, Pronker MF, Franc V, Heck AJR. Selective cross-linking of coinciding protein assemblies by in-gel cross-linking mass spectrometry. EMBO J 2021; 40:e106174. [PMID: 33459420 PMCID: PMC7883291 DOI: 10.15252/embj.2020106174] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
Cross-linking mass spectrometry has developed into an important method to study protein structures and interactions. The in-solution cross-linking workflows involve time and sample consuming steps and do not provide sensible solutions for differentiating cross-links obtained from co-occurring protein oligomers, complexes, or conformers. Here we developed a cross-linking workflow combining blue native PAGE with in-gel cross-linking mass spectrometry (IGX-MS). This workflow circumvents steps, such as buffer exchange and cross-linker concentration optimization. Additionally, IGX-MS enables the parallel analysis of co-occurring protein complexes using only small amounts of sample. Another benefit of IGX-MS, demonstrated by experiments on GroEL and purified bovine heart mitochondria, is the substantial reduction of undesired over-length cross-links compared to in-solution cross-linking. We next used IGX-MS to investigate the complement components C5, C6, and their hetero-dimeric C5b6 complex. The obtained cross-links were used to generate a refined structural model of the complement component C6, resembling C6 in its inactivated state. This finding shows that IGX-MS can provide new insights into the initial stages of the terminal complement pathway.
Collapse
Affiliation(s)
- Johannes F Hevler
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.,Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Marie V Lukassen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.,Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Susanne Arnold
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Matti F Pronker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.,Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.,Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.,Netherlands Proteomics Center, Utrecht, The Netherlands
| |
Collapse
|
31
|
Zhang S, Greening DW, Hong Y. Recent advances in bioanalytical methods to measure proteome stability in cells. Analyst 2021; 146:2097-2109. [DOI: 10.1039/d0an01547d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review summarizes recent bioanalytical methods for measuring and profiling protein stability in cells on a proteome-wide scale, which can provide insights for proteostasis and associated diseases.
Collapse
Affiliation(s)
- Shouxiang Zhang
- Department of Chemistry and Physics
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| | - David W. Greening
- Molecular Proteomics
- Baker Heart and Diabetes Institute
- Melbourne
- Australia
- Department of Biochemistry and Genetics
| | - Yuning Hong
- Department of Chemistry and Physics
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| |
Collapse
|
32
|
Pepelnjak M, de Souza N, Picotti P. Detecting Protein-Small Molecule Interactions Using Limited Proteolysis-Mass Spectrometry (LiP-MS). Trends Biochem Sci 2020; 45:919-920. [PMID: 32475682 DOI: 10.1016/j.tibs.2020.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Monika Pepelnjak
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Natalie de Souza
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland; Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
33
|
Chance MR, Farquhar ER, Yang S, Lodowski DT, Kiselar J. Protein Footprinting: Auxiliary Engine to Power the Structural Biology Revolution. J Mol Biol 2020; 432:2973-2984. [PMID: 32088185 PMCID: PMC7245549 DOI: 10.1016/j.jmb.2020.02.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/25/2022]
Abstract
Structural biology is entering an exciting time where many new high-resolution structures of large complexes and membrane proteins are determined regularly. These advances have been driven by over fifteen years of technology advancements, first in macromolecular crystallography, and recently in Cryo-electron microscopy. These structures are allowing detailed questions about functional mechanisms of the structures, and the biology enabled by these structures, to be addressed for the first time. At the same time, mass spectrometry technologies for protein structure analysis, "footprinting" studies, have improved their sensitivity and resolution dramatically and can provide detailed sub-peptide and residue level information for validating structures and interactions or understanding the dynamics of structures in the context of ligand binding or assembly. In this perspective, we review the use of protein footprinting to extend our understanding of macromolecular systems, particularly for systems challenging for analysis by other techniques, such as intrinsically disordered proteins, amyloidogenic proteins, and other proteins/complexes so far recalcitrant to existing methods. We also illustrate how the availability of high-resolution structural information can be a foundation for a suite of hybrid approaches to divine structure-function relationships beyond what individual techniques can deliver.
Collapse
Affiliation(s)
- Mark R Chance
- Case Center for Proteomics and Bioinformatics, USA; Case Center for Synchrotron Biosciences, USA; Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106, USA.
| | | | - Sichun Yang
- Case Center for Proteomics and Bioinformatics, USA; Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106, USA
| | - David T Lodowski
- Case Center for Proteomics and Bioinformatics, USA; Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106, USA
| | - Janna Kiselar
- Case Center for Proteomics and Bioinformatics, USA; Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106, USA
| |
Collapse
|