1
|
Noori Goodarzi N, Khazani Asforooshani M, Shahbazi B, Rezaie Rahimi N, Badmasti F. Identification of novel drug targets for Helicobacter pylori: structure-based virtual screening of potential inhibitors against DAH7PS protein involved in the shikimate pathway. FRONTIERS IN BIOINFORMATICS 2024; 4:1482338. [PMID: 39493576 PMCID: PMC11527725 DOI: 10.3389/fbinf.2024.1482338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024] Open
Abstract
Background Helicobacter pylori, a bacterium associated with severe gastrointestinal diseases and malignancies, poses a significant challenge because of its increasing antibiotic resistance rates. This study aimed to identify potential drug targets and inhibitors against H. pylori using a structure-based virtual screening (SBVS) approach. Methods Core-proteome analysis of 132 H. pylori genomes was performed using the EDGAR database. Essential genes were identified and human and gut microbiota homolog proteins were excluded. The DAH7PS protein involved in the shikimate pathway was selected for the structure-based virtual screening (SBVS) approach. The tertiary structure of the protein was predicted through homology modeling (based on PDB ID: 5UXM). Molecular docking was performed to identify potential inhibitors of DAH7PS among StreptomeDB compounds using the AutoDock Vina tool. Molecular dynamics (MD) simulations assessed the stability of DAH7PS-ligand complexes. The complexes were further evaluated in terms of their binding affinity, Lipinski's Rule of Five, and ADMET properties. Results A total of 54 novel drug targets with desirable properties were identified. DAH7PS was selected for further investigation, and virtual screening of StreptomeDB compounds yielded 36 high-affinity binding of the ligands. Two small molecules, 6,8-Dihydroxyisocoumarin-3-carboxylic acid and Epicatechin, also showed favorable RO5 and ADMET properties. MD simulations confirmed the stability and reliability of DAH7PS-ligand complexes, indicating their potential as inhibitors. Conclusion This study identified 54 novel drug targets against H. pylori. The DAH7PS protein as a promising drug target was evaluated using a computer-aided drug design. 6,8-Dihydroxyisocoumarin-3-carboxylic acid and Epicatechin demonstrated desirable properties and stable interactions, highlighting their potential to inhibit DAH7PS as an essential protein. Undoubtedly, more experimental validations are needed to advance these findings into practical therapies for treating drug-resistant H. pylori.
Collapse
Affiliation(s)
- Narjes Noori Goodarzi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahshid Khazani Asforooshani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Behzad Shahbazi
- School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran
| | - Nayereh Rezaie Rahimi
- Department of environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Shende VV, Bauman KD, Moore BS. The shikimate pathway: gateway to metabolic diversity. Nat Prod Rep 2024; 41:604-648. [PMID: 38170905 PMCID: PMC11043010 DOI: 10.1039/d3np00037k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Covering: 1997 to 2023The shikimate pathway is the metabolic process responsible for the biosynthesis of the aromatic amino acids phenylalanine, tyrosine, and tryptophan. Seven metabolic steps convert phosphoenolpyruvate (PEP) and erythrose 4-phosphate (E4P) into shikimate and ultimately chorismate, which serves as the branch point for dedicated aromatic amino acid biosynthesis. Bacteria, fungi, algae, and plants (yet not animals) biosynthesize chorismate and exploit its intermediates in their specialized metabolism. This review highlights the metabolic diversity derived from intermediates of the shikimate pathway along the seven steps from PEP and E4P to chorismate, as well as additional sections on compounds derived from prephenate, anthranilate and the synonymous aminoshikimate pathway. We discuss the genomic basis and biochemical support leading to shikimate-derived antibiotics, lipids, pigments, cofactors, and other metabolites across the tree of life.
Collapse
Affiliation(s)
- Vikram V Shende
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Katherine D Bauman
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Bradley S Moore
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
3
|
Blomgren LKM, Huber M, Mackinnon SR, Bürer C, Baslé A, Yue WW, Froese DS, McCorvie TJ. Dynamic inter-domain transformations mediate the allosteric regulation of human 5, 10-methylenetetrahydrofolate reductase. Nat Commun 2024; 15:3248. [PMID: 38622112 PMCID: PMC11018872 DOI: 10.1038/s41467-024-47174-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
5,10-methylenetetrahydrofolate reductase (MTHFR) commits folate-derived one-carbon units to generate the methyl-donor S-adenosyl-L-methionine (SAM). Eukaryotic MTHFR appends to the well-conserved catalytic domain (CD) a unique regulatory domain (RD) that confers feedback inhibition by SAM. Here we determine the cryo-electron microscopy structures of human MTHFR bound to SAM and its demethylated product S-adenosyl-L-homocysteine (SAH). In the active state, with the RD bound to a single SAH, the CD is flexible and exposes its active site for catalysis. However, in the inhibited state the RD pocket is remodelled, exposing a second SAM-binding site that was previously occluded. Dual-SAM bound MTHFR demonstrates a substantially rearranged inter-domain linker that reorients the CD, inserts a loop into the active site, positions Tyr404 to bind the cofactor FAD, and blocks substrate access. Our data therefore explain the long-distance regulatory mechanism of MTHFR inhibition, underpinned by the transition between dual-SAM and single-SAH binding in response to cellular methylation status.
Collapse
Affiliation(s)
- Linnea K M Blomgren
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, University of Zürich, Zürich, CH-8032, Switzerland
| | - Melanie Huber
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, University of Zürich, Zürich, CH-8032, Switzerland
| | - Sabrina R Mackinnon
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Céline Bürer
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, University of Zürich, Zürich, CH-8032, Switzerland
| | - Arnaud Baslé
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Wyatt W Yue
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- Centre for Medicines Discovery, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, University of Zürich, Zürich, CH-8032, Switzerland.
| | - Thomas J McCorvie
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
4
|
Liu H, Xiao Q, Wu X, Ma H, Li J, Guo X, Liu Z, Zhang Y, Luo Y. Mechanistic investigation of a D to N mutation in DAHP synthase that dictates carbon flux into the shikimate pathway in yeast. Commun Chem 2023; 6:152. [PMID: 37454208 DOI: 10.1038/s42004-023-00946-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS) is a key enzyme in the shikimate pathway for the biosynthesis of aromatic compounds. L-Phe and L-Tyr bind to the two main DAHPS isoforms and inhibit their enzyme activities, respectively. Synthetic biologists aim to relieve such inhibitions in order to improve the productivity of aromatic compounds. In this work, we reported a point mutant of yeast DHAPS, Aro3D154N, which retains the wild type enzyme activity but converts it highly inert to the inhibition by L-Phe. The Aro3 crystal structure along with the molecular dynamics simulations analysis suggests that the D154N mutation distant from the inhibitor binding cavity may reduce the binding affinity of L-Phe. Growth assays demonstrated that substitution of the conserved D154 with asparagine suffices to relieve the inhibition of L-Phe on Aro3, L-Tyr on Aro4, and the inhibitions on their corresponding homologues from diverse yeasts. The importance of our discovery is highlighted by the observation of 29.1% and 43.6% increase of yield for the production of tyrosol and salidroside respectively upon substituting ARO3 with ARO3D154N. We anticipate that this allele would be used broadly to increase the yield of various aromatic products in metabolically diverse microorganisms.
Collapse
Affiliation(s)
- Huayi Liu
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Georgia Tech Shenzhen Institute, Tianjin University, Tangxing Road 133, Nanshan District, Shenzhen, 518071, China
| | - Qingjie Xiao
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute (Zhangjiang Laboratory), Chinese Academy of Sciences, Shanghai, 201210, China
| | - Xinxin Wu
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - He Ma
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jian Li
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xufan Guo
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhenyu Liu
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Yunzi Luo
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Georgia Tech Shenzhen Institute, Tianjin University, Tangxing Road 133, Nanshan District, Shenzhen, 518071, China.
| |
Collapse
|
5
|
Bai Y, Jiao W, Vörster J, Parker EJ. Conformational interdomain flexibility in a bacterial α-isopropylmalate synthase is necessary for leucine biosynthesis. J Biol Chem 2022; 299:102789. [PMID: 36509144 PMCID: PMC9860122 DOI: 10.1016/j.jbc.2022.102789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
α-Isopropylmalate synthase (IPMS) catalyzes the first step in leucine (Leu) biosynthesis and is allosterically regulated by the pathway end product, Leu. IPMS is a dimeric enzyme with each chain consisting of catalytic, accessory, and regulatory domains, with the accessory and regulatory domains of each chain sitting adjacent to the catalytic domain of the other chain. The IPMS crystal structure shows significant asymmetry because of different relative domain conformations in each chain. Owing to the challenges posed by the dynamic and asymmetric structures of IPMS enzymes, the molecular details of their catalytic and allosteric mechanisms are not fully understood. In this study, we have investigated the allosteric feedback mechanism of the IPMS enzyme from the bacterium that causes meningitis, Neisseria meningitidis (NmeIPMS). By combining molecular dynamics simulations with small-angle X-ray scattering, mutagenesis, and heterodimer generation, we demonstrate that Leu-bound NmeIPMS is in a rigid conformational state stabilized by asymmetric interdomain polar interactions. Furthermore, we found removing these polar interactions by mutagenesis impaired the allosteric response without compromising Leu binding. Our results suggest that the allosteric inhibition of NmeIPMS is achieved by restricting the flexibility of the accessory and regulatory domains, demonstrating that significant conformational flexibility is required for catalysis.
Collapse
Affiliation(s)
- Yu Bai
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Wanting Jiao
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Jan Vörster
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Emily J. Parker
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand,For correspondence: Emily J. Parker
| |
Collapse
|
6
|
Yokoyama R, de Oliveira MVV, Takeda-Kimura Y, Ishihara H, Alseekh S, Arrivault S, Kukshal V, Jez JM, Stitt M, Fernie AR, Maeda HA. Point mutations that boost aromatic amino acid production and CO 2 assimilation in plants. SCIENCE ADVANCES 2022; 8:eabo3416. [PMID: 35675400 PMCID: PMC9176744 DOI: 10.1126/sciadv.abo3416] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Aromatic compounds having unusual stability provide high-value chemicals and considerable promise for carbon storage. Terrestrial plants can convert atmospheric CO2 into diverse and abundant aromatic compounds. However, it is unclear how plants control the shikimate pathway that connects the photosynthetic carbon fixation with the biosynthesis of aromatic amino acids, the major precursors of plant aromatic natural products. This study identified suppressor of tyra2 (sota) mutations that deregulate the first step in the plant shikimate pathway by alleviating multiple effector-mediated feedback regulation in Arabidopsis thaliana. The sota mutant plants showed hyperaccumulation of aromatic amino acids accompanied by up to a 30% increase in net CO2 assimilation. The identified mutations can be used to enhance plant-based, sustainable conversion of atmospheric CO2 to high-energy and high-value aromatic compounds.
Collapse
Affiliation(s)
- Ryo Yokoyama
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Hirofumi Ishihara
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Stéphanie Arrivault
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Vandna Kukshal
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Joseph M. Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Mark Stitt
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Hiroshi A. Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
7
|
Yokoyama R, Kleven B, Gupta A, Wang Y, Maeda HA. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase as the gatekeeper of plant aromatic natural product biosynthesis. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102219. [PMID: 35550985 DOI: 10.1016/j.pbi.2022.102219] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/23/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
The shikimate pathway connects the central carbon metabolism with the biosynthesis of aromatic amino acids-l-tyrosine, l-phenylalanine, and l-tryptophan-which play indispensable roles as precursors of numerous aromatic phytochemicals. Despite the importance of the shikimate pathway-derived products for both plant physiology and human society, the regulatory mechanism of the shikimate pathway remains elusive. This review summarizes the recent progress and current understanding on the plant 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHP synthase or DHS) enzymes that catalyze the committed reaction of the shikimate pathway. We particularly focus on how the DHS activity is regulated in plants in comparison to those of microbes and discuss potential roles of DHS as the critical gatekeeper for the production of plant aromatic compounds.
Collapse
Affiliation(s)
- Ryo Yokoyama
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Bailey Kleven
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Anika Gupta
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yuer Wang
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
8
|
Timsit Y, Grégoire SP. Towards the Idea of Molecular Brains. Int J Mol Sci 2021; 22:ijms222111868. [PMID: 34769300 PMCID: PMC8584932 DOI: 10.3390/ijms222111868] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
How can single cells without nervous systems perform complex behaviours such as habituation, associative learning and decision making, which are considered the hallmark of animals with a brain? Are there molecular systems that underlie cognitive properties equivalent to those of the brain? This review follows the development of the idea of molecular brains from Darwin’s “root brain hypothesis”, through bacterial chemotaxis, to the recent discovery of neuron-like r-protein networks in the ribosome. By combining a structural biology view with a Bayesian brain approach, this review explores the evolutionary labyrinth of information processing systems across scales. Ribosomal protein networks open a window into what were probably the earliest signalling systems to emerge before the radiation of the three kingdoms. While ribosomal networks are characterised by long-lasting interactions between their protein nodes, cell signalling networks are essentially based on transient interactions. As a corollary, while signals propagated in persistent networks may be ephemeral, networks whose interactions are transient constrain signals diffusing into the cytoplasm to be durable in time, such as post-translational modifications of proteins or second messenger synthesis. The duration and nature of the signals, in turn, implies different mechanisms for the integration of multiple signals and decision making. Evolution then reinvented networks with persistent interactions with the development of nervous systems in metazoans. Ribosomal protein networks and simple nervous systems display architectural and functional analogies whose comparison could suggest scale invariance in information processing. At the molecular level, the significant complexification of eukaryotic ribosomal protein networks is associated with a burst in the acquisition of new conserved aromatic amino acids. Knowing that aromatic residues play a critical role in allosteric receptors and channels, this observation suggests a general role of π systems and their interactions with charged amino acids in multiple signal integration and information processing. We think that these findings may provide the molecular basis for designing future computers with organic processors.
Collapse
Affiliation(s)
- Youri Timsit
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
- Correspondence:
| | - Sergeant-Perthuis Grégoire
- Institut de Mathématiques de Jussieu—Paris Rive Gauche (IMJ-PRG), UMR 7586, CNRS-Université Paris Diderot, 75013 Paris, France;
| |
Collapse
|
9
|
Bai Y, Parker EJ. Reciprocal allostery arising from a bienzyme assembly controls aromatic amino acid biosynthesis in Prevotella nigrescens. J Biol Chem 2021; 297:101038. [PMID: 34343567 PMCID: PMC8408635 DOI: 10.1016/j.jbc.2021.101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022] Open
Abstract
Modular protein assembly has been widely reported as a mechanism for constructing allosteric machinery. Recently, a distinctive allosteric system has been identified in a bienzyme assembly comprising a 3-deoxy-d-arabino heptulosonate-7-phosphate synthase (DAH7PS) and chorismate mutase (CM). These enzymes catalyze the first and branch point reactions of aromatic amino acid biosynthesis in the bacterium Prevotella nigrescens (PniDAH7PS), respectively. The interactions between these two distinct catalytic domains support functional interreliance within this bifunctional enzyme. The binding of prephenate, the product of CM-catalyzed reaction, to the CM domain is associated with a striking rearrangement of overall protein conformation that alters the interdomain interactions and allosterically inhibits the DAH7PS activity. Here, we have further investigated the complex allosteric communication demonstrated by this bifunctional enzyme. We observed allosteric activation of CM activity in the presence of all DAH7PS substrates. Using small-angle X-ray scattering (SAXS) experiments, we show that changes in overall protein conformations and dynamics are associated with the presence of different DAH7PS substrates and the allosteric inhibitor prephenate. Furthermore, we have identified an extended interhelix loop located in CM domain, loopC320-F333, as a crucial segment for the interdomain structural and catalytic communications. Our results suggest that the dual-function enzyme PniDAH7PS contains a reciprocal allosteric system between the two enzymatic moieties as a result of this bidirectional interdomain communication. This arrangement allows for a complex feedback and feedforward system for control of pathway flux by connecting the initiation and branch point of aromatic amino acid biosynthesis.
Collapse
Affiliation(s)
- Yu Bai
- Maurice Wilkins Centre, Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Emily J Parker
- Maurice Wilkins Centre, Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
10
|
Hubrich F, Müller M, Andexer JN. Chorismate- and isochorismate converting enzymes: versatile catalysts acting on an important metabolic node. Chem Commun (Camb) 2021; 57:2441-2463. [PMID: 33605953 DOI: 10.1039/d0cc08078k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chorismate and isochorismate represent an important branching point connecting primary and secondary metabolism in bacteria, fungi, archaea and plants. Chorismate- and isochorismate-converting enzymes are potential targets for new bioactive compounds, as well as valuable biocatalysts for the in vivo and in vitro synthesis of fine chemicals. The diversity of the products of chorismate- and isochorismate-converting enzymes is reflected in the enzymatic three-dimensional structures and molecular mechanisms. Due to the high reactivity of chorismate and its derivatives, these enzymes have evolved to be accurately tailored to their respective reaction; at the same time, many of them exhibit a fascinating flexibility regarding side reactions and acceptance of alternative substrates. Here, we give an overview of the different (sub)families of chorismate- and isochorismate-converting enzymes, their molecular mechanisms, and three-dimensional structures. In addition, we highlight important results of mutagenetic approaches that generate a broader understanding of the influence of distinct active site residues for product formation and the conversion of one subfamily into another. Based on this, we discuss to what extent the recent advances in the field might influence the general mechanistic understanding of chorismate- and isochorismate-converting enzymes. Recent discoveries of new chorismate-derived products and pathways, as well as biocatalytic conversions of non-physiological substrates, highlight how this vast field is expected to continue developing in the future.
Collapse
Affiliation(s)
- Florian Hubrich
- ETH Zurich, Institute of Microbiology, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | | | | |
Collapse
|
11
|
Computational investigations of allostery in aromatic amino acid biosynthetic enzymes. Biochem Soc Trans 2021; 49:415-429. [PMID: 33544132 DOI: 10.1042/bst20200741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022]
Abstract
Allostery, in which binding of ligands to remote sites causes a functional change in the active sites, is a fascinating phenomenon observed in enzymes. Allostery can occur either with or without significant conformational changes in the enzymes, and the molecular basis of its mechanism can be difficult to decipher using only experimental techniques. Computational tools for analyzing enzyme sequences, structures, and dynamics can provide insights into the allosteric mechanism at the atomic level. Combining computational and experimental methods offers a powerful strategy for the study of enzyme allostery. The aromatic amino acid biosynthesis pathway is essential in microorganisms and plants. Multiple enzymes involved in this pathway are sensitive to feedback regulation by pathway end products and are known to use allostery to control their activities. To date, four enzymes in the aromatic amino acid biosynthesis pathway have been computationally investigated for their allosteric mechanisms, including 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase, anthranilate synthase, chorismate mutase, and tryptophan synthase. Here we review the computational studies and findings on the allosteric mechanisms of these four enzymes. Results from these studies demonstrate the capability of computational tools and encourage future computational investigations of allostery in other enzymes of this pathway.
Collapse
|