1
|
Galesic A, Pan B, Ramirez J, Rhoades E, Pratt MR, Petersson EJ. Combining non-canonical amino acid mutagenesis and native chemical ligation for multiply modifying proteins: A case study of α-synuclein post-translational modifications. Methods 2023; 218:101-109. [PMID: 37549799 PMCID: PMC10657485 DOI: 10.1016/j.ymeth.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023] Open
Abstract
The Parkinson's disease associated protein α-synuclein (αS) has been found to contain numerous post-translational modifications (PTMs), in both physiological and pathological states. One PTM site of particular interest is serine 87, which is subject to both O-linked β-N-acetylglucosamine (gS) modification and phosphorylation (pS), with αS-pS87 enriched in Parkinson's disease. An often-overlooked aspect of these PTMs is their effect on the membrane-binding properties of αS, which are important to its role in regulating neurotransmitter release. Here, we show how one can study these effects by synthesizing αS constructs containing authentic PTMs and labels for single molecule fluorescence correlation spectroscopy measurements. We synthesize αS-gS87 and αS-pS87 by combining native chemical ligation with genetic code expansion approaches. We introduce the fluorophore by a click reaction with a non-canonical amino acid. Beyond the specific problem of PTM effects on αS, our studies highlight the value of this combination of methods for multiply modifying proteins.
Collapse
Affiliation(s)
- Ana Galesic
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Buyan Pan
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
| | - Jennifer Ramirez
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Elizabeth Rhoades
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Matthew R. Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - E. James Petersson
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Pratt MR. A sticky solution to protein-selective sugar installation. Cell Res 2023; 33:493-494. [PMID: 36813880 PMCID: PMC10313716 DOI: 10.1038/s41422-023-00787-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Affiliation(s)
- Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
4
|
Abstract
Post-translational modification with O-linked β-N-acetylglucosamine (O-GlcNAc), a process referred to as O-GlcNAcylation, occurs on a vast variety of proteins. Mounting evidence in the past several decades has clearly demonstrated that O-GlcNAcylation is a unique and ubiquitous modification. Reminiscent of a code, protein O-GlcNAcylation functions as a crucial regulator of nearly all cellular processes studied. The primary aim of this review is to summarize the developments in our understanding of myriad protein substrates modified by O-GlcNAcylation from a systems perspective. Specifically, we provide a comprehensive survey of O-GlcNAcylation in multiple species studied, including eukaryotes (e.g., protists, fungi, plants, Caenorhabditis elegans, Drosophila melanogaster, murine, and human), prokaryotes, and some viruses. We evaluate features (e.g., structural properties and sequence motifs) of O-GlcNAc modification on proteins across species. Given that O-GlcNAcylation functions in a species-, tissue-/cell-, protein-, and site-specific manner, we discuss the functional roles of O-GlcNAcylation on human proteins. We focus particularly on several classes of relatively well-characterized human proteins (including transcription factors, protein kinases, protein phosphatases, and E3 ubiquitin-ligases), with representative O-GlcNAc site-specific functions presented. We hope the systems view of the great endeavor in the past 35 years will help demystify the O-GlcNAc code and lead to more fascinating studies in the years to come.
Collapse
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
5
|
Balana AT, Mukherjee A, Nagpal H, Moon SP, Fierz B, Vasquez KM, Pratt MR. O-GlcNAcylation of High Mobility Group Box 1 (HMGB1) Alters Its DNA Binding and DNA Damage Processing Activities. J Am Chem Soc 2021; 143:16030-16040. [PMID: 34546745 DOI: 10.1021/jacs.1c06192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein O-GlcNAcylation is an essential and dynamic regulator of myriad cellular processes, including DNA replication and repair. Proteomic studies have identified the multifunctional nuclear protein HMGB1 as O-GlcNAcylated, providing a potential link between this modification and DNA damage responses. Here, we verify the protein's endogenous modification at S100 and S107 and found that the major modification site is S100, a residue that can potentially influence HMGB1-DNA interactions. Using synthetic protein chemistry, we generated site-specifically O-GlcNAc-modified HMGB1 at S100 and characterized biochemically the effect of the sugar modification on its DNA binding activity. We found that O-GlcNAc alters HMGB1 binding to linear, nucleosomal, supercoiled, cruciform, and interstrand cross-linked damaged DNA, generally resulting in enhanced oligomerization on these DNA structures. Using cell-free extracts, we also found that O-GlcNAc reduces the ability of HMGB1 to facilitate DNA repair, resulting in error-prone processing of damaged DNA. Our results expand our understanding of the molecular consequences of O-GlcNAc and how it affects protein-DNA interfaces. Importantly, our work may also support a link between upregulated O-GlcNAc levels and increased rates of mutations in certain cancer states.
Collapse
Affiliation(s)
| | - Anirban Mukherjee
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, Texas 78723, United States
| | - Harsh Nagpal
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | - Beat Fierz
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, Texas 78723, United States
| | | |
Collapse
|
6
|
Bi J, Tan Q, Wu H, Liu Q, Zhang G. Rhodium-Catalyzed Denitrogenative Transannulation of N-Sulfonyl-1,2,3-triazoles with Glycals Giving Pyrroline-Fused N-Glycosides. Org Lett 2021; 23:6357-6361. [PMID: 34346222 DOI: 10.1021/acs.orglett.1c02141] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Described here is a selective synthesis of 2,3-dihydropyrrole-fused N-glycosides through rhodium-catalyzed denitrogenative transannulation of N-sulfonyl-1,2,3-triazoles with glycals. A series of pyrroline-fused N-glycosides are afforded in moderate to excellent yields with exclusive regioselectivity and stereoselectivity. Functional application of such a resultant product by oxidative addition and epoxidation is also explored. Notably, the treatment of a pyrroline-fused N-glycoside (3a) with TMSOTf efficiently leads to an interesting unexpected C-nucleoside (9) via a TMSOTf-inducing ring opening/acetyl migration/ring closing reaction sequence.
Collapse
Affiliation(s)
- Jingjing Bi
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qiang Tan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hao Wu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qingfeng Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|