1
|
Ullrich T, Klimenkova O, Pollmann C, Lasram A, Hatskovska V, Maksymenko K, Milijaš-Jotić M, Schenk L, Lengerke C, Hartmann MD, Piehler J, Skokowa J, ElGamacy M. A strategy to design protein-based antagonists against type I cytokine receptors. PLoS Biol 2024; 22:e3002883. [PMID: 39591631 PMCID: PMC11596305 DOI: 10.1371/journal.pbio.3002883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/06/2024] [Indexed: 11/28/2024] Open
Abstract
Excessive cytokine signaling resulting from dysregulation of a cytokine or its receptor can be a main driver of cancer, autoimmune, or hematopoietic disorders. Here, we leverage protein design to create tailored cytokine receptor blockers with idealized properties. Specifically, we aimed to tackle the granulocyte-colony stimulating factor receptor (G-CSFR), a mediator of different types of leukemia and autoinflammatory diseases. By modifying designed G-CSFR binders, we engineered hyper-stable proteins that function as nanomolar signaling antagonists. X-ray crystallography showed atomic-level agreement with the experimental structure of an exemplary design. Furthermore, the most potent design blocks G-CSFR in acute myeloid leukemia cells and primary human hematopoietic stem cells. Thus, the resulting designs can be used for inhibiting or homing to G-CSFR-expressing cells. Our results also demonstrate that similarly designed cytokine mimics can be used to derive antagonists to tackle other type I cytokine receptors.
Collapse
Affiliation(s)
- Timo Ullrich
- Max Planck Institute for Biology, Department of Protein Evolution, Tübingen, Germany
| | - Olga Klimenkova
- Translational Oncology, Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Christoph Pollmann
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Asma Lasram
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Valeriia Hatskovska
- Max Planck Institute for Biology, Department of Protein Evolution, Tübingen, Germany
- Translational Oncology, Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Kateryna Maksymenko
- Max Planck Institute for Biology, Department of Protein Evolution, Tübingen, Germany
| | - Matej Milijaš-Jotić
- Max Planck Institute for Biology, Department of Protein Evolution, Tübingen, Germany
| | - Lukas Schenk
- Translational Oncology, Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Claudia Lengerke
- Translational Oncology, Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Marcus D. Hartmann
- Max Planck Institute for Biology, Department of Protein Evolution, Tübingen, Germany
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Julia Skokowa
- Translational Oncology, Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Mohammad ElGamacy
- Max Planck Institute for Biology, Department of Protein Evolution, Tübingen, Germany
- Translational Oncology, Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Maksymenko K, Maurer A, Aghaallaei N, Barry C, Borbarán-Bravo N, Ullrich T, Dijkstra TM, Hernandez Alvarez B, Müller P, Lupas AN, Skokowa J, ElGamacy M. The design of functional proteins using tensorized energy calculations. CELL REPORTS METHODS 2023; 3:100560. [PMID: 37671023 PMCID: PMC10475850 DOI: 10.1016/j.crmeth.2023.100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/25/2023] [Accepted: 07/21/2023] [Indexed: 09/07/2023]
Abstract
In protein design, the energy associated with a huge number of sequence-conformer perturbations has to be routinely estimated. Hence, enhancing the throughput and accuracy of these energy calculations can profoundly improve design success rates and enable tackling more complex design problems. In this work, we explore the possibility of tensorizing the energy calculations and apply them in a protein design framework. We use this framework to design enhanced proteins with anti-cancer and radio-tracing functions. Particularly, we designed multispecific binders against ligands of the epidermal growth factor receptor (EGFR), where the tested design could inhibit EGFR activity in vitro and in vivo. We also used this method to design high-affinity Cu2+ binders that were stable in serum and could be readily loaded with copper-64 radionuclide. The resulting molecules show superior functional properties for their respective applications and demonstrate the generalizable potential of the described protein design approach.
Collapse
Affiliation(s)
- Kateryna Maksymenko
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University, 72076 Tübingen, Germany
| | - Narges Aghaallaei
- Division of Translational Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Caroline Barry
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Krieger School of Arts and Sciences, Johns Hopkins University, Washington, DC 20036, USA
| | - Natalia Borbarán-Bravo
- Division of Translational Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Timo Ullrich
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Tjeerd M.H. Dijkstra
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Department for Women’s Health, University Hospital Tübingen, 72076 Tübingen, Germany
- Translational Bioinformatics, University Hospital Tübingen, 72072 Tübingen, Germany
| | | | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Andrei N. Lupas
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Julia Skokowa
- Division of Translational Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Mohammad ElGamacy
- Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
- Division of Translational Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Naudin EA, Albanese KI, Smith AJ, Mylemans B, Baker EG, Weiner OD, Andrews DM, Tigue N, Savery NJ, Woolfson DN. From peptides to proteins: coiled-coil tetramers to single-chain 4-helix bundles. Chem Sci 2022; 13:11330-11340. [PMID: 36320580 PMCID: PMC9533478 DOI: 10.1039/d2sc04479j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
The design of completely synthetic proteins from first principles-de novo protein design-is challenging. This is because, despite recent advances in computational protein-structure prediction and design, we do not understand fully the sequence-to-structure relationships for protein folding, assembly, and stabilization. Antiparallel 4-helix bundles are amongst the most studied scaffolds for de novo protein design. We set out to re-examine this target, and to determine clear sequence-to-structure relationships, or design rules, for the structure. Our aim was to determine a common and robust sequence background for designing multiple de novo 4-helix bundles. In turn, this could be used in chemical and synthetic biology to direct protein-protein interactions and as scaffolds for functional protein design. Our approach starts by analyzing known antiparallel 4-helix coiled-coil structures to deduce design rules. In terms of the heptad repeat, abcdefg -i.e., the sequence signature of many helical bundles-the key features that we identify are: a = Leu, d = Ile, e = Ala, g = Gln, and the use of complementary charged residues at b and c. Next, we implement these rules in the rational design of synthetic peptides to form antiparallel homo- and heterotetramers. Finally, we use the sequence of the homotetramer to derive in one step a single-chain 4-helix-bundle protein for recombinant production in E. coli. All of the assembled designs are confirmed in aqueous solution using biophysical methods, and ultimately by determining high-resolution X-ray crystal structures. Our route from peptides to proteins provides an understanding of the role of each residue in each design.
Collapse
Affiliation(s)
- Elise A Naudin
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Katherine I Albanese
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Abigail J Smith
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
| | - Bram Mylemans
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Emily G Baker
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
| | - Orion D Weiner
- Cardiovascular Research Institute, Department of Biochemistry and Biophysics, University of California 555 Mission Bay Blvd. South San Francisco CA 94158 USA
| | - David M Andrews
- Oncology R&D, AstraZeneca Cambridge Science Park, Darwin Building Cambridge CB4 0WG UK
| | - Natalie Tigue
- BioPharmaceuticals R&D, AstraZeneca Granta Park Cambridge CB21 6GH UK
| | - Nigel J Savery
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisEngBio, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Derek N Woolfson
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol Cantock's Close Bristol BS8 1TS UK
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisEngBio, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
4
|
Jorgensen MD, Chmielewski J. Recent advances in coiled-coil peptide materials and their biomedical applications. Chem Commun (Camb) 2022; 58:11625-11636. [PMID: 36172799 DOI: 10.1039/d2cc04434j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extensive research has gone into deciphering the sequence requirements for peptides to fold into coiled-coils of varying oligomeric states. More recently, additional signals have been introduced within coiled-coils to promote higher order assembly into biomaterials with a rich distribution of morphologies. Herein we describe these strategies for association of coiled-coil building blocks and biomedical applications. With many of the systems described herein having proven use in protein storage, cargo binding and delivery, three dimensional cell culturing and vaccine development, the future potential of coiled-coil materials to have significant biomedical impact is highly promising.
Collapse
Affiliation(s)
- Michael D Jorgensen
- Purdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, Indiana, USA.
| | - Jean Chmielewski
- Purdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, Indiana, USA.
| |
Collapse
|
5
|
Bioinformatics Analysis of the Periodicity in Proteins with Coiled-Coil Structure—Enumerating All Decompositions of Sequence Periods. Int J Mol Sci 2022; 23:ijms23158692. [PMID: 35955828 PMCID: PMC9369452 DOI: 10.3390/ijms23158692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
A coiled coil is a structural motif in proteins that consists of at least two α-helices wound around each other. For structural stabilization, these α-helices form interhelical contacts via their amino acid side chains. However, there are restrictions as to the distances along the amino acid sequence at which those contacts occur. As the spatial period of the α-helix is 3.6, the most frequent distances between hydrophobic contacts are 3, 4, and 7. Up to now, the multitude of possible decompositions of α-helices participating in coiled coils at these distances has not been explored systematically. Here, we present an algorithm that computes all non-redundant decompositions of sequence periods of hydrophobic amino acids into distances of 3, 4, and 7. Further, we examine which decompositions can be found in nature by analyzing the available data and taking a closer look at correlations between the properties of the coiled coil and its decomposition. We find that the availability of decompositions allowing for coiled-coil formation without putting too much strain on the α-helix geometry follows an oscillatory pattern in respect of period length. Our algorithm supplies the basis for exploring the possible decompositions of coiled coils of any period length.
Collapse
|
6
|
ElGamacy M. Accelerating therapeutic protein design. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:85-118. [PMID: 35534117 DOI: 10.1016/bs.apcsb.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein structures provide for defined microenvironments that can support complex pharmacological functions, otherwise unachievable by small molecules. The advent of therapeutic proteins has thus greatly broadened the range of manageable disorders. Leveraging the knowledge and recent advances in de novo protein design methods has the prospect of revolutionizing how protein drugs are discovered and developed. This review lays out the main challenges facing therapeutic proteins discovery and development, and how present and future advancements of protein design can accelerate the protein drug pipelines.
Collapse
Affiliation(s)
- Mohammad ElGamacy
- University Hospital Tübingen, Division of Translational Oncology, Tübingen, Germany; Max Planck Institute for Biology, Tübingen, Germany.
| |
Collapse
|
7
|
Changing channels. Nat Chem 2021; 13:621-623. [PMID: 34211143 DOI: 10.1038/s41557-021-00738-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|