1
|
Shi W, Yang H, Xie L, Yin XX, Zhang Y. A review of machine learning-based methods for predicting drug-target interactions. Health Inf Sci Syst 2024; 12:30. [PMID: 38617016 PMCID: PMC11014838 DOI: 10.1007/s13755-024-00287-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/04/2024] [Indexed: 04/16/2024] Open
Abstract
The prediction of drug-target interactions (DTI) is a crucial preliminary stage in drug discovery and development, given the substantial risk of failure and the prolonged validation period associated with in vitro and in vivo experiments. In the contemporary landscape, various machine learning-based methods have emerged as indispensable tools for DTI prediction. This paper begins by placing emphasis on the data representation employed by these methods, delineating five representations for drugs and four for proteins. The methods are then categorized into traditional machine learning-based approaches and deep learning-based ones, with a discussion of representative approaches in each category and the introduction of a novel taxonomy for deep neural network models in DTI prediction. Additionally, we present a synthesis of commonly used datasets and evaluation metrics to facilitate practical implementation. In conclusion, we address current challenges and outline potential future directions in this research field.
Collapse
Affiliation(s)
- Wen Shi
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510006 China
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua, 321004 China
| | - Hong Yang
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510006 China
| | - Linhai Xie
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing, 102206 China
| | - Xiao-Xia Yin
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510006 China
| | - Yanchun Zhang
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua, 321004 China
- Department of New Networks, Peng Cheng Laboratory, Shenzhen, 518000 China
| |
Collapse
|
2
|
He Y, Ning Z, Zhu X, Zhang Y, Liu C, Jiang S, Yuan Z, Zhang H. Plant lncRNA-miRNA Interaction Prediction Based on Counterfactual Heterogeneous Graph Attention Network. Interdiscip Sci 2024:10.1007/s12539-024-00652-9. [PMID: 39382820 DOI: 10.1007/s12539-024-00652-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 10/10/2024]
Abstract
Identifying interactions between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) provides a new perspective for understanding regulatory relationships in plant life processes. Recently, computational methods based on graph neural networks (GNNs) have been widely employed to predict lncRNA-miRNA interactions (LMIs), which compensate for the inadequacy of biological experiments. However, the low-semantic and noise of graph limit the performance of existing GNN-based methods. In this paper, we develop a novel Counterfactual Heterogeneous Graph Attention Network (CFHAN) to improve the robustness to against the noise and the prediction of plant LMIs. Firstly, we construct a real-world based lncRNA-miRNA (L-M) heterogeneous network. Secondly, CFHAN utilizes the node-level attention, the semantic-level attention, and the counterfactual links to enhance the node embeddings learning. Finally, these embeddings are used as inputs for Multilayer Perceptron (MLP) to predict the interactions between lncRNAs and miRNAs. Evaluating our method on a benchmark dataset of plant LMIs, CFHAN outperforms five state-of-the-art methods, and achieves an average AUC and average ACC of 0.9953 and 0.9733, respectively. This demonstrates CFHAN's ability to predict plant LMIs and exhibits promising cross-species prediction ability, offering valuable insights for experimental LMI researches.
Collapse
Affiliation(s)
- Yu He
- College of Information and Intelligence, Hunan Agricultural University, Changsha, 410128, China
| | - ZiLan Ning
- College of Information and Intelligence, Hunan Agricultural University, Changsha, 410128, China
| | - XingHui Zhu
- College of Information and Intelligence, Hunan Agricultural University, Changsha, 410128, China
| | - YinQiong Zhang
- College of Information and Intelligence, Hunan Agricultural University, Changsha, 410128, China
| | - ChunHai Liu
- Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-Making, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - SiWei Jiang
- College of Information and Intelligence, Hunan Agricultural University, Changsha, 410128, China
| | - ZheMing Yuan
- Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-Making, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| | - HongYan Zhang
- College of Information and Intelligence, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
3
|
Cingiz MÖ. Ensemble decision of local similarity indices on the biological network for disease related gene prediction. PeerJ 2024; 12:e17975. [PMID: 39247551 PMCID: PMC11380840 DOI: 10.7717/peerj.17975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Link prediction (LP) is a task for the identification of potential, missing and spurious links in complex networks. Protein-protein interaction (PPI) networks are important for understanding the underlying biological mechanisms of diseases. Many complex networks have been constructed using LP methods; however, there are a limited number of studies that focus on disease-related gene predictions and evaluate these genes using various evaluation criteria. The main objective of the study is to investigate the effect of a simple ensemble method in disease related gene predictions. Local similarity indices (LSIs) based disease related gene predictions were integrated by a simple ensemble decision method, simple majority voting (SMV), on the PPI network to detect accurate disease related genes. Human PPI network was utilized to discover potential disease related genes using four LSIs for the gene prediction. LSIs discovered potential links between disease related genes, which were obtained from OMIM database for gastric, colorectal, breast, prostate and lung cancers. LSIs based disease related genes were ranked due to their LSI scores in descending order for retrieving the top 10, 50 and 100 disease related genes. SMV integrated four LSIs based predictions to obtain SMV based the top 10, 50 and 100 disease related genes. The performance of LSIs based and SMV based genes were evaluated separately by employing overlap analyses, which were performed with GeneCard disease-gene relation dataset and Gene Ontology (GO) terms. The GO-terms were used for biological assessment for the inferred gene lists by LSIs and SMV on all cancer types. Adamic-Adar (AA), Resource Allocation Index (RAI), and SMV based gene lists are generally achieved good performance results on all cancers in both overlap analyses. SMV also outperformed on breast cancer data. The increment in the selection of the number of the top ranked disease related genes also enhanced the performance results of SMV.
Collapse
Affiliation(s)
- Mustafa Özgür Cingiz
- Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey
| |
Collapse
|
4
|
Ma R, Pang G, Chen L. Harnessing collective structure knowledge in data augmentation for graph neural networks. Neural Netw 2024; 180:106651. [PMID: 39217862 DOI: 10.1016/j.neunet.2024.106651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/19/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Graph neural networks (GNNs) have achieved state-of-the-art performance in graph representation learning. Message passing neural networks, which learn representations through recursively aggregating information from each node and its neighbors, are among the most commonly-used GNNs. However, a wealth of structural information of individual nodes and full graphs is often ignored in such process, which restricts the expressive power of GNNs. Various graph data augmentation methods that enable the message passing with richer structure knowledge have been introduced as one main way to tackle this issue, but they are often focused on individual structure features and difficult to scale up with more structure features. In this work we propose a novel approach, namely collective structure knowledge-augmented graph neural network (CoS-GNN), in which a new message passing method is introduced to allow GNNs to harness a diverse set of node- and graph-level structure features, together with original node features/attributes, in augmented graphs. In doing so, our approach largely improves the structural knowledge modeling of GNNs in both node and graph levels, resulting in substantially improved graph representations. This is justified by extensive empirical results where CoS-GNN outperforms state-of-the-art models in various graph-level learning tasks, including graph classification, anomaly detection, and out-of-distribution generalization.
Collapse
Affiliation(s)
- Rongrong Ma
- Faculty of Engineering and Information Technology, University of Technology Sydney, 123 Broadway, Sydney, 2007, NSW, Australia.
| | - Guansong Pang
- School of Computing and Information Systems, Singapore Management University, 80 Stamford Rd, 178902, Singapore.
| | - Ling Chen
- Faculty of Engineering and Information Technology, University of Technology Sydney, 123 Broadway, Sydney, 2007, NSW, Australia.
| |
Collapse
|
5
|
Correa Marrero M, Jänes J, Baptista D, Beltrao P. Integrating Large-Scale Protein Structure Prediction into Human Genetics Research. Annu Rev Genomics Hum Genet 2024; 25:123-140. [PMID: 38621234 DOI: 10.1146/annurev-genom-120622-020615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The last five years have seen impressive progress in deep learning models applied to protein research. Most notably, sequence-based structure predictions have seen transformative gains in the form of AlphaFold2 and related approaches. Millions of missense protein variants in the human population lack annotations, and these computational methods are a valuable means to prioritize variants for further analysis. Here, we review the recent progress in deep learning models applied to the prediction of protein structure and protein variants, with particular emphasis on their implications for human genetics and health. Improved prediction of protein structures facilitates annotations of the impact of variants on protein stability, protein-protein interaction interfaces, and small-molecule binding pockets. Moreover, it contributes to the study of host-pathogen interactions and the characterization of protein function. As genome sequencing in large cohorts becomes increasingly prevalent, we believe that better integration of state-of-the-art protein informatics technologies into human genetics research is of paramount importance.
Collapse
Affiliation(s)
- Miguel Correa Marrero
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland;
| | - Jürgen Jänes
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland;
| | | | - Pedro Beltrao
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland;
| |
Collapse
|
6
|
Tian Z, Dai Y, Hu F, Shen Z, Xu H, Zhang H, Xu J, Hu Y, Diao Y, Li H. Enhancing Chemical Reaction Monitoring with a Deep Learning Model for NMR Spectra Image Matching to Target Compounds. J Chem Inf Model 2024; 64:5624-5633. [PMID: 38979856 DOI: 10.1021/acs.jcim.4c00522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
In the synthetic laboratory, researchers typically rely on nuclear magnetic resonance (NMR) spectra to elucidate structures of synthesized products and confirm whether they match the desired target compounds. As chemical synthesis technology evolves toward intelligence and continuity, efficient computer-assisted structure elucidation (CASE) techniques are required to replace time-consuming manual analysis and provide the necessary speed. However, current CASE methods typically aim to derive precise chemical structures from spectroscopic data, yet they suffer from drawbacks such as low accuracy, high computational cost, and reliance on chemical libraries. In meticulously designed chemical synthesis reactions, researchers prioritize confirming the attainment of the target product based on NMR spectra, rather than focusing on identifying the specific product obtained. For this purpose, we innovatively developed a binary classification model, termed as MatCS, to directly predict the relationship between NMR spectra image (including 1H NMR and 13C NMR) and the molecular structure of the target compound. After evaluating various feature extraction methods, MatCS employs a combination of the Graph Attention Networks and Graph Convolutional Networks to learn the structural features of molecular graphs and the pretrained ResNet101 network with a Convolutional Block Attention Module to extract features from NMR spectra images. The results show that on a challenging Testsim data set, which poses difficulty in distinguishing spectra of similar molecular structures, MatCS achieves comprehensive evaluation metrics with an F1-score of 0.81 and an AUC value of 0.87. Simultaneously, it exhibited commendable performance on an external SDBS data set containing experimental NMR spectra, showcasing substantial potential for structural verification tasks in real automated chemical synthesis.
Collapse
Affiliation(s)
- ZiJing Tian
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Dai
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Feng Hu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - ZiHao Shen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - HongLing Xu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - HongWen Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - JinHang Xu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - YuTing Hu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - YanYan Diao
- Innovation Center for AI and Drug Discovery, School of Pharmacy, East China Normal University, Shanghai 200062, China
- Lingang Laboratory, Shanghai 200031, China
| | - HongLin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Innovation Center for AI and Drug Discovery, School of Pharmacy, East China Normal University, Shanghai 200062, China
- Lingang Laboratory, Shanghai 200031, China
| |
Collapse
|
7
|
Wu H, Liu J, Zhang R, Lu Y, Cui G, Cui Z, Ding Y. A review of deep learning methods for ligand based drug virtual screening. FUNDAMENTAL RESEARCH 2024; 4:715-737. [PMID: 39156568 PMCID: PMC11330120 DOI: 10.1016/j.fmre.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/10/2024] [Accepted: 02/18/2024] [Indexed: 08/20/2024] Open
Abstract
Drug discovery is costly and time consuming, and modern drug discovery endeavors are progressively reliant on computational methodologies, aiming to mitigate temporal and financial expenditures associated with the process. In particular, the time required for vaccine and drug discovery is prolonged during emergency situations such as the coronavirus 2019 pandemic. Recently, the performance of deep learning methods in drug virtual screening has been particularly prominent. It has become a concern for researchers how to summarize the existing deep learning in drug virtual screening, select different models for different drug screening problems, exploit the advantages of deep learning models, and further improve the capability of deep learning in drug virtual screening. This review first introduces the basic concepts of drug virtual screening, common datasets, and data representation methods. Then, large numbers of common deep learning methods for drug virtual screening are compared and analyzed. In addition, a dataset of different sizes is constructed independently to evaluate the performance of each deep learning model for the difficult problem of large-scale ligand virtual screening. Finally, the existing challenges and future directions in the field of virtual screening are presented.
Collapse
Affiliation(s)
- Hongjie Wu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Junkai Liu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Runhua Zhang
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yaoyao Lu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Guozeng Cui
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhiming Cui
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| |
Collapse
|
8
|
He Y, Huang R, Zhang R, He F, Han L, Han W. PredCoffee: A binary classification approach specifically for coffee odor. iScience 2024; 27:110041. [PMID: 38868178 PMCID: PMC11167484 DOI: 10.1016/j.isci.2024.110041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/26/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Compared to traditional methods, using machine learning to assess or predict the odor of molecules can save costs in various aspects. Our research aims to collect molecules with coffee odor and summarize the regularity of these molecules, ultimately creating a binary classifier that can determine whether a molecule has a coffee odor. In this study, a total of 371 coffee-odor molecules and 9,700 non-coffee-odor molecules were collected. The Knowledge-guided Pre-training of Graph Transformer (KPGT), support vector machine (SVM), random forest (RF), multi-layer perceptron (MLP), and message-passing neural networks (MPNN) were used to train the data. The model with the best performance was selected as the basis of the predictor. The prediction accuracy value of the KPGT model exceeded 0.84 and the predictor has been deployed as a webserver PredCoffee.
Collapse
Affiliation(s)
- Yi He
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Ruirui Huang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Ruoyu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Fei He
- Department of Electrical Engineer and Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Lu Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
9
|
Toni E, Ayatollahi H, Abbaszadeh R, Fotuhi Siahpirani A. Machine Learning Techniques for Predicting Drug-Related Side Effects: A Scoping Review. Pharmaceuticals (Basel) 2024; 17:795. [PMID: 38931462 PMCID: PMC11206653 DOI: 10.3390/ph17060795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Drug safety relies on advanced methods for timely and accurate prediction of side effects. To tackle this requirement, this scoping review examines machine-learning approaches for predicting drug-related side effects with a particular focus on chemical, biological, and phenotypical features. METHODS This was a scoping review in which a comprehensive search was conducted in various databases from 1 January 2013 to 31 December 2023. RESULTS The results showed the widespread use of Random Forest, k-nearest neighbor, and support vector machine algorithms. Ensemble methods, particularly random forest, emphasized the significance of integrating chemical and biological features in predicting drug-related side effects. CONCLUSIONS This review article emphasized the significance of considering a variety of features, datasets, and machine learning algorithms for predicting drug-related side effects. Ensemble methods and Random Forest showed the best performance and combining chemical and biological features improved prediction. The results suggested that machine learning techniques have some potential to improve drug development and trials. Future work should focus on specific feature types, selection techniques, and graph-based methods for even better prediction.
Collapse
Affiliation(s)
- Esmaeel Toni
- Medical Informatics, Student Research Committee, Iran University of Medical Sciences, Tehran, Iran 14496-14535;
| | - Haleh Ayatollahi
- Medical Informatics, Health Management and Economics Research Center, Health Management Research Institute, Iran University of Medical Sciences, Tehran, Iran 1996-713883
| | - Reza Abbaszadeh
- Pediatric Cardiology, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran 19956-14331;
| | - Alireza Fotuhi Siahpirani
- Systems Biology and Bioinformatics, Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran 14176-14411;
| |
Collapse
|
10
|
Cinaglia P. PyMulSim: a method for computing node similarities between multilayer networks via graph isomorphism networks. BMC Bioinformatics 2024; 25:211. [PMID: 38872090 PMCID: PMC11170789 DOI: 10.1186/s12859-024-05830-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND In bioinformatics, interactions are modelled as networks, based on graph models. Generally, these support a single-layer structure which incorporates a specific entity (i.e., node) and only one type of link (i.e., edge). However, real-world biological systems consisting of biological objects belonging to heterogeneous entities, and these operate and influence each other in multiple contexts, simultaneously. Usually, node similarities are investigated to assess the relatedness between biological objects in a network of interest, and node embeddings are widely used for studying novel interaction from a topological point of view. About that, the state-of-the-art presents several methods for evaluating the node similarity inside a given network, but methodologies able to evaluate similarities between pairs of nodes belonging to different networks are missing. The latter are crucial for studies that relate different biological networks, e.g., for Network Alignment or to evaluate the possible evolution of the interactions of a little-known network on the basis of a well-known one. Existing methods are ineffective in evaluating nodes outside their structure, even more so in the context of multilayer networks, in which the topic still exploits approaches adapted from static networks. In this paper, we presented pyMulSim, a novel method for computing the pairwise similarities between nodes belonging to different multilayer networks. It uses a Graph Isomorphism Network (GIN) for the representative learning of node features, that uses for processing the embeddings and computing the similarities between the pairs of nodes of different multilayer networks. RESULTS Our experimentation investigated the performance of our method. Results show that our method effectively evaluates the similarities between the biological objects of a source multilayer network to a target one, based on the analysis of the node embeddings. Results have been also assessed for different noise levels, also through statistical significance analyses properly performed for this purpose. CONCLUSIONS PyMulSim is a novel method for computing the pairwise similarities between nodes belonging to different multilayer networks, by using a GIN for learning node embeddings. It has been evaluated both in terms of performance and validity, reporting a high degree of reliability.
Collapse
Affiliation(s)
- Pietro Cinaglia
- Department of Health Sciences, Magna Graecia University, Catanzaro, 88100, Italy.
- Data Analytics Research Center, Magna Graecia University, Catanzaro, 88100, Italy.
| |
Collapse
|
11
|
Yu Z, Jiang M, Lan X. HeteroTCR: A heterogeneous graph neural network-based method for predicting peptide-TCR interaction. Commun Biol 2024; 7:684. [PMID: 38834836 DOI: 10.1038/s42003-024-06380-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/23/2024] [Indexed: 06/06/2024] Open
Abstract
Identifying interactions between T-cell receptors (TCRs) and immunogenic peptides holds profound implications across diverse research domains and clinical scenarios. Unsupervised clustering models (UCMs) cannot predict peptide-TCR binding directly, while supervised predictive models (SPMs) often face challenges in identifying antigens previously unencountered by the immune system or possessing limited TCR binding repertoires. Therefore, we propose HeteroTCR, an SPM based on Heterogeneous Graph Neural Network (GNN), to accurately predict peptide-TCR binding probabilities. HeteroTCR captures within-type (TCR-TCR or peptide-peptide) similarity information and between-type (peptide-TCR) interaction insights for predictions on unseen peptides and TCRs, surpassing limitations of existing SPMs. Our evaluation shows HeteroTCR outperforms state-of-the-art models on independent datasets. Ablation studies and visual interpretation underscore the Heterogeneous GNN module's critical role in enhancing HeteroTCR's performance by capturing pivotal binding process features. We further demonstrate the robustness and reliability of HeteroTCR through validation using single-cell datasets, aligning with the expectation that pMHC-TCR complexes with higher predicted binding probabilities correspond to increased binding fractions.
Collapse
Affiliation(s)
- Zilan Yu
- School of Medicine, Tsinghua University, 100084, Beijing, China
- Centre for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Mengnan Jiang
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Xun Lan
- School of Medicine, Tsinghua University, 100084, Beijing, China.
- Centre for Life Sciences, Tsinghua University, 100084, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Tsinghua University, Beijing, China.
- MOE Key Laboratory of Bioinformatics, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
12
|
Luo Y, Duan G, Zhao Q, Bi X, Wang J. DTKGIN: Predicting drug-target interactions based on knowledge graph and intent graph. Methods 2024; 226:21-27. [PMID: 38608849 DOI: 10.1016/j.ymeth.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/16/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
Knowledge graph intent graph attention mechanism Predicting drug-target interactions (DTIs) plays a crucial role in drug discovery and drug development. Considering the high cost and risk of biological experiments, developing computational approaches to explore the interactions between drugs and targets can effectively reduce the time and cost of drug development. Recently, many methods have made significant progress in predicting DTIs. However, existing approaches still suffer from the high sparsity of DTI datasets and the cold start problem. In this paper, we develop a new model to predict drug-target interactions via a knowledge graph and intent graph named DTKGIN. Our method can effectively capture biological environment information for targets and drugs by mining their associated relations in the knowledge graph and considering drug-target interactions at a fine-grained level in the intent graph. DTKGIN learns the representation of drugs and targets from the knowledge graph and the intent graph. Then the probabilities of interactions between drugs and targets are obtained through the inner product of the representation of drugs and targets. Experimental results show that our proposed method outperforms other state-of-the-art methods in 10-fold cross-validation, especially in cold-start experimental settings. Furthermore, the case studies demonstrate the effectiveness of DTKGIN in predicting potential drug-target interactions. The code is available on GitHub: https://github.com/Royluoyi123/DTKGIN.
Collapse
Affiliation(s)
- Yi Luo
- School of Computer Science and Engineering, Central South University, Changsha 410083, China; Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, China
| | - Guihua Duan
- School of Computer Science and Engineering, Central South University, Changsha 410083, China; Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, China.
| | - Qichang Zhao
- School of Computer Science and Engineering, Central South University, Changsha 410083, China; Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, China
| | - Xuehua Bi
- School of Computer Science and Engineering, Central South University, Changsha 410083, China; Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, China
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China; Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, China
| |
Collapse
|
13
|
Fooladi H, Hirte S, Kirchmair J. Quantifying the Hardness of Bioactivity Prediction Tasks for Transfer Learning. J Chem Inf Model 2024; 64:4031-4046. [PMID: 38739465 PMCID: PMC11134514 DOI: 10.1021/acs.jcim.4c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Today, machine learning methods are widely employed in drug discovery. However, the chronic lack of data continues to hamper their further development, validation, and application. Several modern strategies aim to mitigate the challenges associated with data scarcity by learning from data on related tasks. These knowledge-sharing approaches encompass transfer learning, multitask learning, and meta-learning. A key question remaining to be answered for these approaches is about the extent to which their performance can benefit from the relatedness of available source (training) tasks; in other words, how difficult ("hard") a test task is to a model, given the available source tasks. This study introduces a new method for quantifying and predicting the hardness of a bioactivity prediction task based on its relation to the available training tasks. The approach involves the generation of protein and chemical representations and the calculation of distances between the bioactivity prediction task and the available training tasks. In the example of meta-learning on the FS-Mol data set, we demonstrate that the proposed task hardness metric is inversely correlated with performance (Pearson's correlation coefficient r = -0.72). The metric will be useful in estimating the task-specific gain in performance that can be achieved through meta-learning.
Collapse
Affiliation(s)
- Hosein Fooladi
- Department
of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry,
Faculty of Life Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Christian
Doppler Laboratory for Molecular Informatics in the Biosciences, Department
for Pharmaceutical Sciences, University
of Vienna, 1090 Vienna, Austria
- Vienna
Doctoral School of Pharmaceutical, Nutritional and Sport Sciences
(PhaNuSpo), University of Vienna, 1090 Vienna, Austria
| | - Steffen Hirte
- Department
of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry,
Faculty of Life Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Vienna
Doctoral School of Pharmaceutical, Nutritional and Sport Sciences
(PhaNuSpo), University of Vienna, 1090 Vienna, Austria
| | - Johannes Kirchmair
- Department
of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry,
Faculty of Life Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Christian
Doppler Laboratory for Molecular Informatics in the Biosciences, Department
for Pharmaceutical Sciences, University
of Vienna, 1090 Vienna, Austria
| |
Collapse
|
14
|
Dey V, Ning X. Improving Anticancer Drug Selection and Prioritization via Neural Learning to Rank. J Chem Inf Model 2024; 64:4071-4088. [PMID: 38740382 PMCID: PMC11134508 DOI: 10.1021/acs.jcim.3c01060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Personalized cancer treatment requires a thorough understanding of complex interactions between drugs and cancer cell lines in varying genetic and molecular contexts. To address this, high-throughput screening has been used to generate large-scale drug response data, facilitating data-driven computational models. Such models can capture complex drug-cell line interactions across various contexts in a fully data-driven manner. However, accurately prioritizing the most effective drugs for each cell line still remains a significant challenge. To address this, we developed multiple neural ranking approaches that leverage large-scale drug response data across multiple cell lines from diverse cancer types. Unlike existing approaches that primarily utilize regression and classification techniques for drug response prediction, we formulated the objective of drug selection and prioritization as a drug ranking problem. In this work, we proposed multiple pairwise and listwise neural ranking methods that learn latent representations of drugs and cell lines and then use those representations to score drugs in each cell line via a learnable scoring function. Specifically, we developed neural pairwise and listwise ranking methods, Pair-PushC and List-One on top of the existing methods, pLETORg and ListNet, respectively. Additionally, we proposed a novel listwise ranking method, List-All, that focuses on all the effective drugs instead of the top effective drug, unlike List-One. We also provide an exhaustive empirical evaluation with state-of-the-art regression and ranking baselines on large-scale data sets across multiple experimental settings. Our results demonstrate that our proposed ranking methods mostly outperform the best baselines with significant improvements of as much as 25.6% in terms of selecting truly effective drugs within the top 20 predicted drugs (i.e., hit@20) across 50% test cell lines. Furthermore, our analyses suggest that the learned latent spaces from our proposed methods demonstrate informative clustering structures and capture relevant underlying biological features. Moreover, our comprehensive evaluation provides a thorough and objective comparison of the performance of different methods (including our proposed ones).
Collapse
Affiliation(s)
- Vishal Dey
- Department
of Computer Science and Engineering, The
Ohio State University, Columbus, Ohio 43210, United States
| | - Xia Ning
- Department
of Computer Science and Engineering, The
Ohio State University, Columbus, Ohio 43210, United States
- Biomedical
Informatics, The Ohio State University, Columbus, Ohio 43210, United States
- Translational
Data Analytics Institute, The Ohio State
University, Columbus, Ohio 43210, United States
| |
Collapse
|
15
|
Shen A, Yuan M, Ma Y, Du J, Wang M. Complementary multi-modality molecular self-supervised learning via non-overlapping masking for property prediction. Brief Bioinform 2024; 25:bbae256. [PMID: 38801702 PMCID: PMC11129775 DOI: 10.1093/bib/bbae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Self-supervised learning plays an important role in molecular representation learning because labeled molecular data are usually limited in many tasks, such as chemical property prediction and virtual screening. However, most existing molecular pre-training methods focus on one modality of molecular data, and the complementary information of two important modalities, SMILES and graph, is not fully explored. In this study, we propose an effective multi-modality self-supervised learning framework for molecular SMILES and graph. Specifically, SMILES data and graph data are first tokenized so that they can be processed by a unified Transformer-based backbone network, which is trained by a masked reconstruction strategy. In addition, we introduce a specialized non-overlapping masking strategy to encourage fine-grained interaction between these two modalities. Experimental results show that our framework achieves state-of-the-art performance in a series of molecular property prediction tasks, and a detailed ablation study demonstrates efficacy of the multi-modality framework and the masking strategy.
Collapse
Affiliation(s)
- Ao Shen
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, 131 Dong’an Road, 200032, Shanghai, China
- Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Fudan University, 131 Dong’an Road, 200032, Shanghai, China
| | - Mingzhi Yuan
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, 131 Dong’an Road, 200032, Shanghai, China
- Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Fudan University, 131 Dong’an Road, 200032, Shanghai, China
| | - Yingfan Ma
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, 131 Dong’an Road, 200032, Shanghai, China
- Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Fudan University, 131 Dong’an Road, 200032, Shanghai, China
| | - Jie Du
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, 131 Dong’an Road, 200032, Shanghai, China
- Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Fudan University, 131 Dong’an Road, 200032, Shanghai, China
| | - Manning Wang
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, 131 Dong’an Road, 200032, Shanghai, China
- Shanghai Key Laboratory of Medical Image Computing and Computer Assisted Intervention, Fudan University, 131 Dong’an Road, 200032, Shanghai, China
| |
Collapse
|
16
|
Yao R, Shen Z, Xu X, Ling G, Xiang R, Song T, Zhai F, Zhai Y. Knowledge mapping of graph neural networks for drug discovery: a bibliometric and visualized analysis. Front Pharmacol 2024; 15:1393415. [PMID: 38799167 PMCID: PMC11116974 DOI: 10.3389/fphar.2024.1393415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction In recent years, graph neural network has been extensively applied to drug discovery research. Although researchers have made significant progress in this field, there is less research on bibliometrics. The purpose of this study is to conduct a comprehensive bibliometric analysis of graph neural network applications in drug discovery in order to identify current research hotspots and trends, as well as serve as a reference for future research. Methods Publications from 2017 to 2023 about the application of graph neural network in drug discovery were collected from the Web of Science Core Collection. Bibliometrix, VOSviewer, and Citespace were mainly used for bibliometric studies. Results and Discussion In this paper, a total of 652 papers from 48 countries/regions were included. Research interest in this field is continuously increasing. China and the United States have a significant advantage in terms of funding, the number of publications, and collaborations with other institutions and countries. Although some cooperation networks have been formed in this field, extensive worldwide cooperation still needs to be strengthened. The results of the keyword analysis clarified that graph neural network has primarily been applied to drug-target interaction, drug repurposing, and drug-drug interaction, while graph convolutional neural network and its related optimization methods are currently the core algorithms in this field. Data availability and ethical supervision, balancing computing resources, and developing novel graph neural network models with better interpretability are the key technical issues currently faced. This paper analyzes the current state, hot spots, and trends of graph neural network applications in drug discovery through bibliometric approaches, as well as the current issues and challenges in this field. These findings provide researchers with valuable insights on the current status and future directions of this field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fei Zhai
- Faculty of Medical Device, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuxuan Zhai
- Faculty of Medical Device, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
17
|
Yadalam PK, Natarajan PM, Mosaddad SA, Heboyan A. Graph neural networks-based prediction of drug gene association of P2X receptors in periodontal pain. J Oral Biol Craniofac Res 2024; 14:335-338. [PMID: 38680473 PMCID: PMC11053325 DOI: 10.1016/j.jobcr.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
The P2X7 receptor, a member of the P2X receptor family, plays a crucial role in various physiological processes, particularly pain perception. Its expression across immune, neuronal, and glial cells facilitates the release of pro-inflammatory molecules, thereby influencing pain development and maintenance, as evidenced by its association with pulpitis in rats. Notably, P2X receptors such as P2X3 and P2X7 are pivotal in dental pain pathways, making them promising targets for novel analgesic interventions. Leveraging graph neural networks (GNNs) presents an innovative approach to model graph data, aiding in the identification of drug targets and prediction of their efficacy, complementing advancements in genomics and proteomics for therapeutic development. In this study, 921 drug-gene interactions involving P2X receptors were accessed through https://www.probes-drugs.org/. These interactions underwent meticulous annotation, preprocessing, and subsequent utilization to train and assess GNNs. Furthermore, leveraging Cytoscape, the CytoHubba plugin, and other bioinformatics tools, gene expression networks were constructed to pinpoint hub genes within these interactions. Through analysis, SLC6A3, SLC6A2, FGF1, GRK2, and PLA2G2A were identified as central hub genes within the context of P2X receptor-mediated drug-gene interactions. Despite achieving a 65 percent accuracy rate, the GNN model demonstrated suboptimal predictive power for gene-drug interactions associated with oral pain. Hence, further refinements and enhancements are imperative to unlock its full potential in elucidating and targeting pathways underlying oral pain mechanisms.
Collapse
Affiliation(s)
- Pradeep Kumar Yadalam
- Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Centre of Medical and Bio-allied Health Sciences and Research, College of Dentistry, Ajman University, Ajman, United Arab Emirates
| | - Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Artak Heboyan
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
- Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Qiu Y, Cheng F. Artificial intelligence for drug discovery and development in Alzheimer's disease. Curr Opin Struct Biol 2024; 85:102776. [PMID: 38335558 DOI: 10.1016/j.sbi.2024.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/29/2023] [Accepted: 01/15/2024] [Indexed: 02/12/2024]
Abstract
The complex molecular mechanism and pathophysiology of Alzheimer's disease (AD) limits the development of effective therapeutics or prevention strategies. Artificial Intelligence (AI)-guided drug discovery combined with genetics/multi-omics (genomics, epigenomics, transcriptomics, proteomics, and metabolomics) analysis contributes to the understanding of the pathophysiology and precision medicine of the disease, including AD and AD-related dementia. In this review, we summarize the AI-driven methodologies for AD-agnostic drug discovery and development, including de novo drug design, virtual screening, and prediction of drug-target interactions, all of which have shown potentials. In particular, AI-based drug repurposing emerges as a compelling strategy to identify new indications for existing drugs for AD. We provide several emerging AD targets from human genetics and multi-omics findings and highlight recent AI-based technologies and their applications in drug discovery using AD as a prototypical example. In closing, we discuss future challenges and directions in AI-based drug discovery for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yunguang Qiu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA. https://twitter.com/YunguangQiu
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA; Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
19
|
Wang Z, Wang S, Li Y, Guo J, Wei Y, Mu Y, Zheng L, Li W. A new paradigm for applying deep learning to protein-ligand interaction prediction. Brief Bioinform 2024; 25:bbae145. [PMID: 38581420 PMCID: PMC10998640 DOI: 10.1093/bib/bbae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024] Open
Abstract
Protein-ligand interaction prediction presents a significant challenge in drug design. Numerous machine learning and deep learning (DL) models have been developed to accurately identify docking poses of ligands and active compounds against specific targets. However, current models often suffer from inadequate accuracy or lack practical physical significance in their scoring systems. In this research paper, we introduce IGModel, a novel approach that utilizes the geometric information of protein-ligand complexes as input for predicting the root mean square deviation of docking poses and the binding strength (pKd, the negative value of the logarithm of binding affinity) within the same prediction framework. This ensures that the output scores carry intuitive meaning. We extensively evaluate the performance of IGModel on various docking power test sets, including the CASF-2016 benchmark, PDBbind-CrossDocked-Core and DISCO set, consistently achieving state-of-the-art accuracies. Furthermore, we assess IGModel's generalizability and robustness by evaluating it on unbiased test sets and sets containing target structures generated by AlphaFold2. The exceptional performance of IGModel on these sets demonstrates its efficacy. Additionally, we visualize the latent space of protein-ligand interactions encoded by IGModel and conduct interpretability analysis, providing valuable insights. This study presents a novel framework for DL-based prediction of protein-ligand interactions, contributing to the advancement of this field. The IGModel is available at GitHub repository https://github.com/zchwang/IGModel.
Collapse
Affiliation(s)
- Zechen Wang
- School of Physics, Shandong University, South Shanda Road, 250100 Shandong, China
| | - Sheng Wang
- Shanghai Zelixir Biotech, Xiangke Road, 200030, Shanghai, China
| | - Yangyang Li
- School of Physics, Shandong University, South Shanda Road, 250100 Shandong, China
| | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Rua de Luís Gonzaga Gomes, Macao, China
| | - Yanjie Wei
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Road 1068, Shenzhen, 518055 Guang Dong, China
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Liangzhen Zheng
- Shanghai Zelixir Biotech, Xiangke Road, 200030, Shanghai, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Road 1068, Shenzhen, 518055 Guang Dong, China
| | - Weifeng Li
- School of Physics, Shandong University, South Shanda Road, 250100 Shandong, China
| |
Collapse
|
20
|
Zhang Y, Li S, Meng K, Sun S. Machine Learning for Sequence and Structure-Based Protein-Ligand Interaction Prediction. J Chem Inf Model 2024; 64:1456-1472. [PMID: 38385768 DOI: 10.1021/acs.jcim.3c01841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Developing new drugs is too expensive and time -consuming. Accurately predicting the interaction between drugs and targets will likely change how the drug is discovered. Machine learning-based protein-ligand interaction prediction has demonstrated significant potential. In this paper, computational methods, focusing on sequence and structure to study protein-ligand interactions, are examined. Therefore, this paper starts by presenting an overview of the data sets applied in this area, as well as the various approaches applied for representing proteins and ligands. Then, sequence-based and structure-based classification criteria are subsequently utilized to categorize and summarize both the classical machine learning models and deep learning models employed in protein-ligand interaction studies. Moreover, the evaluation methods and interpretability of these models are proposed. Furthermore, delving into the diverse applications of protein-ligand interaction models in drug research is presented. Lastly, the current challenges and future directions in this field are addressed.
Collapse
Affiliation(s)
- Yunjiang Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, The Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Shuyuan Li
- Beijing Key Laboratory for Green Catalysis and Separation, The Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Kong Meng
- Beijing Key Laboratory for Green Catalysis and Separation, The Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Shaorui Sun
- Beijing Key Laboratory for Green Catalysis and Separation, The Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
21
|
Napolitano G, Has C, Schwerk A, Yuan JH, Ullrich C. Potential of Artificial Intelligence to Accelerate Drug Development for Rare Diseases. Pharmaceut Med 2024; 38:79-86. [PMID: 38315404 DOI: 10.1007/s40290-023-00504-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 02/07/2024]
Abstract
The growth in breadth and depth of artificial intelligence (AI) applications has been fast, running hand in hand with the increasing amount of digital data available. Here, we comment on the application of AI in the field of drug development, with a strong focus on the specific achievements and challenges posed by rare diseases. Data paucity and high costs make drug development for rare diseases especially hard. AI can enable otherwise inaccessible approaches based on the large-scale integration of heterogeneous datasets and knowledge bases, guided by expert biological understanding. Obstacles still exist for the routine use of AI in the usually conservative pharmaceutical domain, which can easily become disillusioned. It is crucial to acknowledge that AI is a powerful, supportive tool that can assist but not replace human expertise in the various phases and aspects of drug discovery and development.
Collapse
Affiliation(s)
| | - Canan Has
- Centogene GmbH, Alboinstraße 36-42, 12103, Berlin, Germany
| | - Anne Schwerk
- Beriln Institute of Health Center for Regenerative Therapies (BCRT), Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jui-Hung Yuan
- Beriln Institute of Health Center for Regenerative Therapies (BCRT), Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Ullrich
- Beriln Institute of Health Center for Regenerative Therapies (BCRT), Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
22
|
Qu X, Du G, Hu J, Cai Y. Graph-DTI: A New Model for Drug-target Interaction Prediction Based on Heterogenous Network Graph Embedding. Curr Comput Aided Drug Des 2024; 20:1013-1024. [PMID: 37448360 DOI: 10.2174/1573409919666230713142255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/04/2023] [Accepted: 05/26/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND In this study, we aimed to develop a new end-to-end learning model called Graph-Drug-Target Interaction (DTI), which integrates various types of information in the heterogeneous network data, and to explore automatic learning of the topology-maintaining representations of drugs and targets, thereby effectively contributing to the prediction of DTI. Precise predictions of DTI can guide drug discovery and development. Most machine learning algorithms integrate multiple data sources and combine them with common embedding methods. However, the relationship between the drugs and target proteins is not well reported. Although some existing studies have used heterogeneous network graphs for DTI prediction, there are many limitations in the neighborhood information between the nodes in the heterogeneous network graphs. We studied the drug-drug interaction (DDI) and DTI from DrugBank Version 3.0, protein-protein interaction (PPI) from the human protein reference database Release 9, drug structure similarity from Morgan fingerprints of radius 2 and calculated by RDKit, and protein sequence similarity from Smith-Waterman score. METHODS Our study consists of three major components. First, various drugs and target proteins were integrated, and a heterogeneous network was established based on a series of data sets. Second, the graph neural networks-inspired graph auto-encoding method was used to extract high-order structural information from the heterogeneous networks, thereby revealing the description of nodes (drugs and proteins) and their topological neighbors. Finally, potential DTI prediction was made, and the obtained samples were sent to the classifier for secondary classification. RESULTS The performance of Graph-DTI and all baseline methods was evaluated using the sums of the area under the precision-recall curve (AUPR) and the area under the receiver operating characteristic curve (AUC). The results indicated that Graph-DTI outperformed the baseline methods in both performance results. CONCLUSION Compared with other baseline DTI prediction methods, the results showed that Graph-DTI had better prediction performance. Additionally, in this study, we effectively classified drugs corresponding to different targets and vice versa. The above findings showed that Graph-DTI provided a powerful tool for drug research, development, and repositioning. Graph- DTI can serve as a drug development and repositioning tool more effectively than previous studies that did not use heterogeneous network graph embedding.
Collapse
Affiliation(s)
- Xiaohan Qu
- School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guoxia Du
- School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jing Hu
- School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongming Cai
- School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Traditional Chinese Medicine Precision Medicine Big Data Engineering Technology Research Center, Guangzhou, China
| |
Collapse
|
23
|
Yang X, Huang K, Yang D, Zhao W, Zhou X. Biomedical Big Data Technologies, Applications, and Challenges for Precision Medicine: A Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300163. [PMID: 38223896 PMCID: PMC10784210 DOI: 10.1002/gch2.202300163] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/20/2023] [Indexed: 01/16/2024]
Abstract
The explosive growth of biomedical Big Data presents both significant opportunities and challenges in the realm of knowledge discovery and translational applications within precision medicine. Efficient management, analysis, and interpretation of big data can pave the way for groundbreaking advancements in precision medicine. However, the unprecedented strides in the automated collection of large-scale molecular and clinical data have also introduced formidable challenges in terms of data analysis and interpretation, necessitating the development of novel computational approaches. Some potential challenges include the curse of dimensionality, data heterogeneity, missing data, class imbalance, and scalability issues. This overview article focuses on the recent progress and breakthroughs in the application of big data within precision medicine. Key aspects are summarized, including content, data sources, technologies, tools, challenges, and existing gaps. Nine fields-Datawarehouse and data management, electronic medical record, biomedical imaging informatics, Artificial intelligence-aided surgical design and surgery optimization, omics data, health monitoring data, knowledge graph, public health informatics, and security and privacy-are discussed.
Collapse
Affiliation(s)
- Xue Yang
- Department of Pancreatic Surgery and West China Biomedical Big Data CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Kexin Huang
- Department of Pancreatic Surgery and West China Biomedical Big Data CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Dewei Yang
- College of Advanced Manufacturing EngineeringChongqing University of Posts and TelecommunicationsChongqingChongqing400000China
| | - Weiling Zhao
- Center for Systems MedicineSchool of Biomedical InformaticsUTHealth at HoustonHoustonTX77030USA
| | - Xiaobo Zhou
- Center for Systems MedicineSchool of Biomedical InformaticsUTHealth at HoustonHoustonTX77030USA
| |
Collapse
|
24
|
Hsiung SY, Deng SX, Li J, Huang SY, Liaw CK, Huang SY, Wang CC, Hsieh YSY. Machine learning-based monosaccharide profiling for tissue-specific classification of Wolfiporia extensa samples. Carbohydr Polym 2023; 322:121338. [PMID: 37839831 DOI: 10.1016/j.carbpol.2023.121338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/09/2023] [Accepted: 08/26/2023] [Indexed: 10/17/2023]
Abstract
Machine learning (ML) has been used for many clinical decision-making processes and diagnostic procedures in bioinformatics applications. We examined eight algorithms, including linear discriminant analysis (LDA), logistic regression (LR), k-nearest neighbor (KNN), random forest (RF), gradient boosting machine (GBM), support vector machine (SVM), Naïve Bayes classifier (NB), and artificial neural network (ANN) models, to evaluate their classification and prediction capabilities for four tissue types in Wolfiporia extensa using their monosaccharide composition profiles. All 8 ML-based models were assessed as exemplary models with AUC exceeding 0.8. Five models, namely LDA, KNN, RF, GBM, and ANN, performed excellently in the four-tissue-type classification (AUC > 0.9). Additionally, all eight models were evaluated as good predictive models with AUC value > 0.8 in the three-tissue-type classification. Notably, all 8 ML-based methods outperformed the single linear discriminant analysis (LDA) plotting method. For large sample sizes, the ML-based methods perform better than traditional regression techniques and could potentially increase the accuracy in identifying tissue samples of W. extensa.
Collapse
Affiliation(s)
- Shih-Yi Hsiung
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shun-Xin Deng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Jing Li
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Sheng-Yao Huang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Chen-Kun Liaw
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Su-Yun Huang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Ching-Chiung Wang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Yves S Y Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan; Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm SE106 91, Sweden.
| |
Collapse
|
25
|
Zhang Y, Liu C, Liu M, Liu T, Lin H, Huang CB, Ning L. Attention is all you need: utilizing attention in AI-enabled drug discovery. Brief Bioinform 2023; 25:bbad467. [PMID: 38189543 PMCID: PMC10772984 DOI: 10.1093/bib/bbad467] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/03/2023] [Accepted: 11/25/2023] [Indexed: 01/09/2024] Open
Abstract
Recently, attention mechanism and derived models have gained significant traction in drug development due to their outstanding performance and interpretability in handling complex data structures. This review offers an in-depth exploration of the principles underlying attention-based models and their advantages in drug discovery. We further elaborate on their applications in various aspects of drug development, from molecular screening and target binding to property prediction and molecule generation. Finally, we discuss the current challenges faced in the application of attention mechanisms and Artificial Intelligence technologies, including data quality, model interpretability and computational resource constraints, along with future directions for research. Given the accelerating pace of technological advancement, we believe that attention-based models will have an increasingly prominent role in future drug discovery. We anticipate that these models will usher in revolutionary breakthroughs in the pharmaceutical domain, significantly accelerating the pace of drug development.
Collapse
Affiliation(s)
- Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiqi Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang 150081, China
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No.150 Haping Road, Nangang District, Harbin, Heilongjiang 150081, China
| | - Mujiexin Liu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianyuan Liu
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Hao Lin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cheng-Bing Huang
- School of Computer Science and Technology, Aba Teachers University, Aba, China
| | - Lin Ning
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu 611844, China
| |
Collapse
|
26
|
Somathilaka SS, Balasubramaniam S, Martins DP, Li X. Revealing gene regulation-based neural network computing in bacteria. BIOPHYSICAL REPORTS 2023; 3:100118. [PMID: 37649578 PMCID: PMC10462848 DOI: 10.1016/j.bpr.2023.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/26/2023] [Indexed: 09/01/2023]
Abstract
Bacteria are known to interpret a range of external molecular signals that are crucial for sensing environmental conditions and adapting their behaviors accordingly. These external signals are processed through a multitude of signaling transduction networks that include the gene regulatory network (GRN). From close observation, the GRN resembles and exhibits structural and functional properties that are similar to artificial neural networks. An in-depth analysis of gene expression dynamics further provides a new viewpoint of characterizing the inherited computing properties underlying the GRN of bacteria despite being non-neuronal organisms. In this study, we introduce a model to quantify the gene-to-gene interaction dynamics that can be embedded in the GRN as weights, converting a GRN to gene regulatory neural network (GRNN). Focusing on Pseudomonas aeruginosa, we extracted the GRNN associated with a well-known virulence factor, pyocyanin production, using an introduced weight extraction technique based on transcriptomic data and proving its computing accuracy using wet-lab experimental data. As part of our analysis, we evaluated the structural changes in the GRNN based on mutagenesis to determine its varying computing behavior. Furthermore, we model the ecosystem-wide cell-cell communications to analyze its impact on computing based on environmental as well as population signals, where we determine the impact on the computing reliability. Subsequently, we establish that the individual GRNNs can be clustered to collectively form computing units with similar behaviors to single-layer perceptrons with varying sigmoidal activation functions spatio-temporally within an ecosystem. We believe that this will lay the groundwork toward molecular machine learning systems that can see artificial intelligence move toward non-silicon devices, or living artificial intelligence, as well as giving us new insights into bacterial natural computing.
Collapse
Affiliation(s)
- Samitha S. Somathilaka
- VistaMilk Research Centre, Walton Institute for Information and Communication Systems Science, South East Technological University, Waterford, Ireland
- School of Computing, University of Nebraska-Lincoln, Lincoln, Nebraska
| | | | - Daniel P. Martins
- VistaMilk Research Centre, Walton Institute for Information and Communication Systems Science, South East Technological University, Waterford, Ireland
| | - Xu Li
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
27
|
Pan Y, Ren H, Lan L, Li Y, Huang T. Review of Predicting Synergistic Drug Combinations. Life (Basel) 2023; 13:1878. [PMID: 37763281 PMCID: PMC10533134 DOI: 10.3390/life13091878] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The prediction of drug combinations is of great clinical significance. In many diseases, such as high blood pressure, diabetes, and stomach ulcers, the simultaneous use of two or more drugs has shown clear efficacy. It has greatly reduced the progression of drug resistance. This review presents the latest applications of methods for predicting the effects of drug combinations and the bioactivity databases commonly used in drug combination prediction. These studies have played a significant role in developing precision therapy. We first describe the concept of synergy. we study various publicly available databases for drug combination prediction tasks. Next, we introduce five algorithms applied to drug combinatorial prediction, which include traditional machine learning methods, deep learning methods, mathematical methods, systems biology methods and search algorithms. In the end, we sum up the difficulties encountered in prediction models.
Collapse
Affiliation(s)
- Yichen Pan
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Y.P.); (H.R.)
| | - Haotian Ren
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Y.P.); (H.R.)
| | - Liang Lan
- Department of Interactive Media, Hong Kong Baptist University, Hong Kong, China;
| | - Yixue Li
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Y.P.); (H.R.)
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Guangzhou Laboratory, Guangzhou 510005, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200433, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (Y.P.); (H.R.)
| |
Collapse
|
28
|
Zhao H, Ni P, Zhao Q, Liang X, Ai D, Erhardt S, Wang J, Li Y, Wang J. Identifying the serious clinical outcomes of adverse reactions to drugs by a multi-task deep learning framework. Commun Biol 2023; 6:870. [PMID: 37620651 PMCID: PMC10449791 DOI: 10.1038/s42003-023-05243-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Adverse Drug Reactions (ADRs) have a direct impact on human health. As continuous pharmacovigilance and drug monitoring prove to be costly and time-consuming, computational methods have emerged as promising alternatives. However, most existing computational methods primarily focus on predicting whether or not the drug is associated with an adverse reaction and do not consider the core issue of drug benefit-risk assessment-whether the treatment outcome is serious when adverse drug reactions occur. To this end, we categorize serious clinical outcomes caused by adverse reactions to drugs into seven distinct classes and present a deep learning framework, so-called GCAP, for predicting the seriousness of clinical outcomes of adverse reactions to drugs. GCAP has two tasks: one is to predict whether adverse reactions to drugs cause serious clinical outcomes, and the other is to infer the corresponding classes of serious clinical outcomes. Experimental results demonstrate that our method is a powerful and robust framework with high extendibility. GCAP can serve as a useful tool to successfully address the challenge of predicting the seriousness of clinical outcomes stemming from adverse reactions to drugs.
Collapse
Affiliation(s)
- Haochen Zhao
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
- Xiangjiang Laboratory, Changsha, 410205, China
| | - Peng Ni
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Qichang Zhao
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Xiao Liang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Di Ai
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Shannon Erhardt
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yaohang Li
- Department of Computer Science, Old Dominion University, Norfolk, VA, 23529-0001, USA
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China.
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China.
- Xiangjiang Laboratory, Changsha, 410205, China.
| |
Collapse
|
29
|
Lee J, Warner E, Shaikhouni S, Bitzer M, Kretzler M, Gipson D, Pennathur S, Bellovich K, Bhat Z, Gadegbeku C, Massengill S, Perumal K, Saha J, Yang Y, Luo J, Zhang X, Mariani L, Hodgin JB, Rao A. Clustering-based spatial analysis (CluSA) framework through graph neural network for chronic kidney disease prediction using histopathology images. Sci Rep 2023; 13:12701. [PMID: 37543648 PMCID: PMC10404289 DOI: 10.1038/s41598-023-39591-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023] Open
Abstract
Machine learning applied to digital pathology has been increasingly used to assess kidney function and diagnose the underlying cause of chronic kidney disease (CKD). We developed a novel computational framework, clustering-based spatial analysis (CluSA), that leverages unsupervised learning to learn spatial relationships between local visual patterns in kidney tissue. This framework minimizes the need for time-consuming and impractical expert annotations. 107,471 histopathology images obtained from 172 biopsy cores were used in the clustering and in the deep learning model. To incorporate spatial information over the clustered image patterns on the biopsy sample, we spatially encoded clustered patterns with colors and performed spatial analysis through graph neural network. A random forest classifier with various groups of features were used to predict CKD. For predicting eGFR at the biopsy, we achieved a sensitivity of 0.97, specificity of 0.90, and accuracy of 0.95. AUC was 0.96. For predicting eGFR changes in one-year, we achieved a sensitivity of 0.83, specificity of 0.85, and accuracy of 0.84. AUC was 0.85. This study presents the first spatial analysis based on unsupervised machine learning algorithms. Without expert annotation, CluSA framework can not only accurately classify and predict the degree of kidney function at the biopsy and in one year, but also identify novel predictors of kidney function and renal prognosis.
Collapse
Affiliation(s)
- Joonsang Lee
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| | - Elisa Warner
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Salma Shaikhouni
- Department of Internal Medicine, Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Markus Bitzer
- Department of Internal Medicine, Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Kretzler
- Department of Internal Medicine, Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Debbie Gipson
- Department of Pediatrics, Pediatric Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Subramaniam Pennathur
- Department of Internal Medicine, Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Keith Bellovich
- Department of Internal Medicine, Nephrology, St. Clair Nephrology Research, Detroit, MI, USA
| | - Zeenat Bhat
- Department of Internal Medicine, Nephrology, Wayne State University, Detroit, MI, USA
| | - Crystal Gadegbeku
- Department of Internal Medicine, Nephrology, Cleveland Clinic, , Cleveland, OH, USA
| | - Susan Massengill
- Department of Pediatrics, Pediatric Nephrology, Levine Children's Hospital, Charlotte, NC, USA
| | - Kalyani Perumal
- Department of Internal Medicine, Nephrology, Department of JH Stroger Hospital, Chicago, IL, USA
| | - Jharna Saha
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yingbao Yang
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jinghui Luo
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Laura Mariani
- Department of Internal Medicine, Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey B Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
| | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
30
|
Tang M, Li B, Chen H. Application of message passing neural networks for molecular property prediction. Curr Opin Struct Biol 2023; 81:102616. [PMID: 37267824 DOI: 10.1016/j.sbi.2023.102616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 06/04/2023]
Abstract
Accurate molecular property prediction, as one of the classical cheminformatics topics, plays a prominent role in the fields of computer-aided drug design. For instance, property prediction models can be used to quickly screen large molecular libraries to find lead compounds. Message-passing neural networks (MPNNs), a sub-class of Graph neural networks (GNNs), have recently been demonstrated to outperform other deep learning methods on a variety of tasks, including the prediction of molecular characteristics. In this survey, we provide a brief review of the MPNN models and their applications on molecular property prediction.
Collapse
Affiliation(s)
- Miru Tang
- Guangzhou Laboratory, Guangzhou, 510005, Guangdong Province, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health-Guangdong Laboratory), Guangzhou, 510530, China; State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Baiqing Li
- Guangzhou Laboratory, Guangzhou, 510005, Guangdong Province, China
| | - Hongming Chen
- Guangzhou Laboratory, Guangzhou, 510005, Guangdong Province, China.
| |
Collapse
|
31
|
Dalkıran A, Atakan A, Rifaioğlu AS, Martin MJ, Atalay RÇ, Acar AC, Doğan T, Atalay V. Transfer learning for drug-target interaction prediction. Bioinformatics 2023; 39:i103-i110. [PMID: 37387156 DOI: 10.1093/bioinformatics/btad234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 07/01/2023] Open
Abstract
MOTIVATION Utilizing AI-driven approaches for drug-target interaction (DTI) prediction require large volumes of training data which are not available for the majority of target proteins. In this study, we investigate the use of deep transfer learning for the prediction of interactions between drug candidate compounds and understudied target proteins with scarce training data. The idea here is to first train a deep neural network classifier with a generalized source training dataset of large size and then to reuse this pre-trained neural network as an initial configuration for re-training/fine-tuning purposes with a small-sized specialized target training dataset. To explore this idea, we selected six protein families that have critical importance in biomedicine: kinases, G-protein-coupled receptors (GPCRs), ion channels, nuclear receptors, proteases, and transporters. In two independent experiments, the protein families of transporters and nuclear receptors were individually set as the target datasets, while the remaining five families were used as the source datasets. Several size-based target family training datasets were formed in a controlled manner to assess the benefit provided by the transfer learning approach. RESULTS Here, we present a systematic evaluation of our approach by pre-training a feed-forward neural network with source training datasets and applying different modes of transfer learning from the pre-trained source network to a target dataset. The performance of deep transfer learning is evaluated and compared with that of training the same deep neural network from scratch. We found that when the training dataset contains fewer than 100 compounds, transfer learning outperforms the conventional strategy of training the system from scratch, suggesting that transfer learning is advantageous for predicting binders to under-studied targets. AVAILABILITY AND IMPLEMENTATION The source code and datasets are available at https://github.com/cansyl/TransferLearning4DTI. Our web-based service containing the ready-to-use pre-trained models is accessible at https://tl4dti.kansil.org.
Collapse
Affiliation(s)
- Alperen Dalkıran
- Department of Computer Engineering, Middle East Technical University, Ankara 06800, Turkey
- Department of Computer Engineering, Adana Alparslan Türkeş Science and Technology University, Adana 01250, Turkey
| | - Ahmet Atakan
- Department of Computer Engineering, Middle East Technical University, Ankara 06800, Turkey
- Department of Computer Engineering, Erzincan Binali Yıldırım University, Erzincan 24002, Turkey
| | - Ahmet S Rifaioğlu
- Department of Computer Engineering, Iskenderun Technical University, Hatay 31200, Turkey
- Faculty of Medicine, Institute for Computational Biomedicine, Heidelberg University and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Maria J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Hinxton CB10 1SD, United Kingdom
| | - Rengül Çetin Atalay
- Faculty of Pulmonary and Critical Care Medicine, the University of Chicago, Chicago, IL, 60637, United States
| | - Aybar C Acar
- Cancer Systems Biology Laboratory (Kansil), Middle East Technical University, Ankara 06800, Turkey
| | - Tunca Doğan
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Hinxton CB10 1SD, United Kingdom
- Department of Computer Engineering, Hacettepe University, Ankara 06800, Turkey
| | - Volkan Atalay
- Department of Computer Engineering, Middle East Technical University, Ankara 06800, Turkey
| |
Collapse
|
32
|
Zhou L, Wang Y, Peng L, Li Z, Luo X. Identifying potential drug-target interactions based on ensemble deep learning. Front Aging Neurosci 2023; 15:1176400. [PMID: 37396659 PMCID: PMC10309650 DOI: 10.3389/fnagi.2023.1176400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/10/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction Drug-target interaction prediction is one important step in drug research and development. Experimental methods are time consuming and laborious. Methods In this study, we developed a novel DTI prediction method called EnGDD by combining initial feature acquisition, dimensional reduction, and DTI classification based on Gradient boosting neural network, Deep neural network, and Deep Forest. Results EnGDD was compared with seven stat-of-the-art DTI prediction methods (BLM-NII, NRLMF, WNNGIP, NEDTP, DTi2Vec, RoFDT, and MolTrans) on the nuclear receptor, GPCR, ion channel, and enzyme datasets under cross validations on drugs, targets, and drug-target pairs, respectively. EnGDD computed the best recall, accuracy, F1-score, AUC, and AUPR under the majority of conditions, demonstrating its powerful DTI identification performance. EnGDD predicted that D00182 and hsa2099, D07871 and hsa1813, DB00599 and hsa2562, D00002 and hsa10935 have a higher interaction probabilities among unknown drug-target pairs and may be potential DTIs on the four datasets, respectively. In particular, D00002 (Nadide) was identified to interact with hsa10935 (Mitochondrial peroxiredoxin3) whose up-regulation might be used to treat neurodegenerative diseases. Finally, EnGDD was used to find possible drug targets for Parkinson's disease and Alzheimer's disease after confirming its DTI identification performance. The results show that D01277, D04641, and D08969 may be applied to the treatment of Parkinson's disease through targeting hsa1813 (dopamine receptor D2) and D02173, D02558, and D03822 may be the clues of treatment for patients with Alzheimer's disease through targeting hsa5743 (prostaglandinendoperoxide synthase 2). The above prediction results need further biomedical validation. Discussion We anticipate that our proposed EnGDD model can help discover potential therapeutic clues for various diseases including neurodegenerative diseases.
Collapse
Affiliation(s)
- Liqian Zhou
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Yuzhuang Wang
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Lihong Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Zejun Li
- School of Computer Science, Hunan Institute of Technology, Hengyang, China
| | - Xueming Luo
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
33
|
Kim SY. Personalized Explanations for Early Diagnosis of Alzheimer's Disease Using Explainable Graph Neural Networks with Population Graphs. Bioengineering (Basel) 2023; 10:701. [PMID: 37370632 DOI: 10.3390/bioengineering10060701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Leveraging recent advances in graph neural networks, our study introduces an application of graph convolutional networks (GCNs) within a correlation-based population graph, aiming to enhance Alzheimer's disease (AD) prognosis and illuminate the intricacies of AD progression. This methodological approach leverages the inherent structure and correlations in demographic and neuroimaging data to predict amyloid-beta (Aβ) positivity. To validate our approach, we conducted extensive performance comparisons with conventional machine learning models and a GCN model with randomly assigned edges. The results consistently highlighted the superior performance of the correlation-based GCN model across different sample groups in the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, suggesting the importance of accurately reflecting the correlation structure in population graphs for effective pattern recognition and accurate prediction. Furthermore, our exploration of the model's decision-making process using GNNExplainer identified unique sets of biomarkers indicative of Aβ positivity in different groups, shedding light on the heterogeneity of AD progression. This study underscores the potential of our proposed approach for more nuanced AD prognoses, potentially informing more personalized and precise therapeutic strategies. Future research can extend these findings by integrating diverse data sources, employing longitudinal data, and refining the interpretability of the model, which potentially has broad applicability to other complex diseases.
Collapse
Affiliation(s)
- So Yeon Kim
- Department of Artificial Intelligence, Ajou University, Suwon 16499, Republic of Korea
- Department of Software and Computer Engineering, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
34
|
Cinaglia P, Cannataro M. Identifying Candidate Gene-Disease Associations via Graph Neural Networks. ENTROPY (BASEL, SWITZERLAND) 2023; 25:909. [PMID: 37372253 DOI: 10.3390/e25060909] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
Real-world objects are usually defined in terms of their own relationships or connections. A graph (or network) naturally expresses this model though nodes and edges. In biology, depending on what the nodes and edges represent, we may classify several types of networks, gene-disease associations (GDAs) included. In this paper, we presented a solution based on a graph neural network (GNN) for the identification of candidate GDAs. We trained our model with an initial set of well-known and curated inter- and intra-relationships between genes and diseases. It was based on graph convolutions, making use of multiple convolutional layers and a point-wise non-linearity function following each layer. The embeddings were computed for the input network built on a set of GDAs to map each node into a vector of real numbers in a multidimensional space. Results showed an AUC of 95% for training, validation, and testing, that in the real case translated into a positive response for 93% of the Top-15 (highest dot product) candidate GDAs identified by our solution. The experimentation was conducted on the DisGeNET dataset, while the DiseaseGene Association Miner (DG-AssocMiner) dataset by Stanford's BioSNAP was also processed for performance evaluation only.
Collapse
Affiliation(s)
- Pietro Cinaglia
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Mario Cannataro
- Data Analytics Research Center, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
35
|
Sun J, Xu M, Ru J, James-Bott A, Xiong D, Wang X, Cribbs AP. Small molecule-mediated targeting of microRNAs for drug discovery: Experiments, computational techniques, and disease implications. Eur J Med Chem 2023; 257:115500. [PMID: 37262996 DOI: 10.1016/j.ejmech.2023.115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
Small molecules have been providing medical breakthroughs for human diseases for more than a century. Recently, identifying small molecule inhibitors that target microRNAs (miRNAs) has gained importance, despite the challenges posed by labour-intensive screening experiments and the significant efforts required for medicinal chemistry optimization. Numerous experimentally-verified cases have demonstrated the potential of miRNA-targeted small molecule inhibitors for disease treatment. This new approach is grounded in their posttranscriptional regulation of the expression of disease-associated genes. Reversing dysregulated gene expression using this mechanism may help control dysfunctional pathways. Furthermore, the ongoing improvement of algorithms has allowed for the integration of computational strategies built on top of laboratory-based data, facilitating a more precise and rational design and discovery of lead compounds. To complement the use of extensive pharmacogenomics data in prioritising potential drugs, our previous work introduced a computational approach based on only molecular sequences. Moreover, various computational tools for predicting molecular interactions in biological networks using similarity-based inference techniques have been accumulated in established studies. However, there are a limited number of comprehensive reviews covering both computational and experimental drug discovery processes. In this review, we outline a cohesive overview of both biological and computational applications in miRNA-targeted drug discovery, along with their disease implications and clinical significance. Finally, utilizing drug-target interaction (DTIs) data from DrugBank, we showcase the effectiveness of deep learning for obtaining the physicochemical characterization of DTIs.
Collapse
Affiliation(s)
- Jianfeng Sun
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
| | - Miaoer Xu
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Jinlong Ru
- Chair of Prevention of Microbial Diseases, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, 85354, Germany
| | - Anna James-Bott
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Dapeng Xiong
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Xia Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Adam P Cribbs
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
36
|
Fan H, Huang X, Zhang Z, Wang T, Wang L, Zhang Y. Immobilization of M3 Muscarinic Receptor to Rapidly Analyze Drug-Protein Interactions and Bioactive Components in a Natural Plant. Int J Mol Sci 2023; 24:ijms24087171. [PMID: 37108332 PMCID: PMC10139132 DOI: 10.3390/ijms24087171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Despite its increasing application in pursing potential ligands, the capacity of receptor affinity chromatography is greatly challenged as most current research studies lack a comprehensive characterization of the ligand-receptor interaction, particularly when simultaneously determining their binding thermodynamics and kinetics. This work developed an immobilized M3 muscarinic receptor (M3R) affinity column by fixing M3R on amino polystyrene microspheres via the interaction of a 6-chlorohexanoic acid linker with haloalkane dehalogenase. The efficiency of the immobilized M3R was tested by characterizing the binding thermodynamics and kinetics of three known drugs to immobilized M3R using a frontal analysis and the peak profiling method, as well as by analyzing the bioactive compounds in Daturae Flos (DF) extract. The data showed that the immobilized M3R demonstrated good specificity, stability, and competence for analyzing drug-protein interactions. The association constants of (-)-scopolamine hydrochloride, atropine sulfate, and pilocarpine to M3R were determined to be (2.39 ± 0.03) × 104, (3.71 ± 0.03) × 104, and (2.73 ± 0.04) × 104 M-1, respectively, with dissociation rate constants of 27.47 ± 0.65, 14.28 ± 0.17, and 10.70 ± 0.35 min-1, respectively. Hyoscyamine and scopolamine were verified as the bioactive compounds that bind to M3R in the DF extract. Our results suggest that the immobilized M3R method was capable of determining drug-protein binding parameters and probing specific ligands in a natural plant, thus enhancing the effectiveness of receptor affinity chromatography in diverse stages of drug discovery.
Collapse
Affiliation(s)
- Hushuai Fan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xiaomin Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ziru Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ting Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ludan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yajun Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
37
|
Bu Y, Gao R, Zhang B, Zhang L, Sun D. CoGT: Ensemble Machine Learning Method and Its Application on JAK Inhibitor Discovery. ACS OMEGA 2023; 8:13232-13242. [PMID: 37065046 PMCID: PMC10099439 DOI: 10.1021/acsomega.3c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
The discovery of new drug candidates to inhibit an intended target is a complex and resource-consuming process. A machine learning (ML) method for predicting drug-target interactions (DTI) is a potential solution to improve the efficiency. However, traditional ML approaches have limitations in accuracy. In this study, we developed a novel ensemble model CoGT for DTI prediction using multilayer perceptron (MLP), which integrated graph-based models to extract non-Euclidean molecular structures and large pretrained models, specifically chemBERTa, to process simplified molecular input line entry systems (SMILES). The performance of CoGT was evaluated using compounds inhibiting four Janus kinases (JAKs). Results showed that the large pretrained model, chemBERTa, was better than other conventional ML models in predicting DTI across multiple evaluation metrics, while the graph neural network (GNN) was effective for prediction on imbalanced data sets. To take full advantage of the strengths of these different models, we developed an ensemble model, CoGT, which outperformed other individual ML models in predicting compounds' inhibition on different isoforms of JAKs. Our data suggest that the ensemble model CoGT has the potential to accelerate the process of drug discovery.
Collapse
Affiliation(s)
- Yingzi Bu
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ruoxi Gao
- Department
of Electrical Engineering and Computer Science, University of MichiganAnn Arbor, Michigan 48109, United States
| | - Bohan Zhang
- School
of Information, University of MichiganAnn Arbor, Michigan 48109, United States
| | - Luchen Zhang
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
38
|
Chen J, Gu Z, Xu Y, Deng M, Lai L, Pei J. QuoteTarget: A sequence-based transformer protein language model to identify potentially druggable protein targets. Protein Sci 2023; 32:e4555. [PMID: 36564866 PMCID: PMC9878469 DOI: 10.1002/pro.4555] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
The development of efficient computational methods for drug target protein identification can compensate for the high cost of experiments and is therefore of great significance for drug development. However, existing structure-based drug target protein-identification algorithms are limited by the insufficient number of proteins with experimentally resolved structures. Moreover, sequence-based algorithms cannot effectively extract information from protein sequences and thus display insufficient accuracy. Here, we combined the sequence-based self-supervised pretraining protein language model ESM1b with a graph convolutional neural network classifier to develop an improved, sequence-based drug target protein identification method. This complete model, named QuoteTarget, efficiently encodes proteins based on sequence information alone and achieves an accuracy of 95% with the nonredundant drug target and nondrug target datasets constructed for this study. When applied to all proteins from Homo sapiens, QuoteTarget identified 1213 potential undeveloped drug target proteins. We further inferred residue-binding weights from the well-trained network using the gradient-weighted class activation mapping (Grad-Cam) algorithm. Notably, we found that without any binding site information input, significant residues inferred by the model closely match the experimentally confirmed drug molecule-binding sites. Thus, our work provides a highly effective sequence-based identifier for drug target proteins, as well to yield new insights into recognizing drug molecule-binding sites. The entire model is available at https://github.com/Chenjxjx/drug-target-prediction.
Collapse
Affiliation(s)
- Jiaxiao Chen
- Center for Quantitative BiologyAcademy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Zhonghui Gu
- Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Youjun Xu
- Infinite Intelligence PharmaBeijingChina
| | - Minghua Deng
- Center for Quantitative BiologyAcademy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
- School of Mathematical SciencesPeking UniversityBeijingChina
- Center for Statistical SciencePeking UniversityBeijingChina
| | - Luhua Lai
- Center for Quantitative BiologyAcademy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
- BNLMS, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
- Research Unit of Drug Design MethodChinese Academy of Medical SciencesBeijingChina
| | - Jianfeng Pei
- Center for Quantitative BiologyAcademy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
- Research Unit of Drug Design MethodChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
39
|
Wu J, Kang Y, Pan P, Hou T. Machine learning methods for pK a prediction of small molecules: Advances and challenges. Drug Discov Today 2022; 27:103372. [PMID: 36167281 DOI: 10.1016/j.drudis.2022.103372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/15/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022]
Abstract
The acid-base dissociation constant (pKa) is a fundamental property influencing many ADMET properties of small molecules. However, rapid and accurate pKa prediction remains a great challenge. In this review, we outline the current advances in machine-learning-based QSAR models for pKa prediction, including descriptor-based and graph-based approaches, and summarize their pros and cons. Moreover, we highlight the current challenges and future directions regarding experimental data, crucial factors influencing pKa and in silico prediction tools. We hope that this review can provide a practical guidance for the follow-up studies.
Collapse
Affiliation(s)
- Jialu Wu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yu Kang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Peichen Pan
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
40
|
Graph Neural Network for Protein-Protein Interaction Prediction: A Comparative Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186135. [PMID: 36144868 PMCID: PMC9501426 DOI: 10.3390/molecules27186135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022]
Abstract
Proteins are the fundamental biological macromolecules which underline practically all biological activities. Protein-protein interactions (PPIs), as they are known, are how proteins interact with other proteins in their environment to perform biological functions. Understanding PPIs reveals how cells behave and operate, such as the antigen recognition and signal transduction in the immune system. In the past decades, many computational methods have been developed to predict PPIs automatically, requiring less time and resources than experimental techniques. In this paper, we present a comparative study of various graph neural networks for protein-protein interaction prediction. Five network models are analyzed and compared, including neural networks (NN), graph convolutional neural networks (GCN), graph attention networks (GAT), hyperbolic neural networks (HNN), and hyperbolic graph convolutions (HGCN). By utilizing the protein sequence information, all of these models can predict the interaction between proteins. Fourteen PPI datasets are extracted and utilized to compare the prediction performance of all these methods. The experimental results show that hyperbolic graph neural networks tend to have a better performance than the other methods on the protein-related datasets.
Collapse
|
41
|
Cheng F, Tuncbag N. Editorial overview: Artificial intelligence (AI) methodologies in structural biology. Curr Opin Struct Biol 2022; 74:102387. [PMID: 35589509 DOI: 10.1016/j.sbi.2022.102387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Nurcan Tuncbag
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, Istanbul, 34450, Turkey; School of Medicine, Koc University, Istanbul, 34450, Turkey.
| |
Collapse
|
42
|
Shao K, Zhang Y, Wen Y, Zhang Z, He S, Bo X. DTI-HETA: prediction of drug-target interactions based on GCN and GAT on heterogeneous graph. Brief Bioinform 2022; 23:6563180. [PMID: 35380622 DOI: 10.1093/bib/bbac109] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/14/2022] [Accepted: 03/03/2022] [Indexed: 12/19/2022] Open
Abstract
Drug-target interaction (DTI) prediction plays an important role in drug repositioning, drug discovery and drug design. However, due to the large size of the chemical and genomic spaces and the complex interactions between drugs and targets, experimental identification of DTIs is costly and time-consuming. In recent years, the emerging graph neural network (GNN) has been applied to DTI prediction because DTIs can be represented effectively using graphs. However, some of these methods are only based on homogeneous graphs, and some consist of two decoupled steps that cannot be trained jointly. To further explore GNN-based DTI prediction by integrating heterogeneous graph information, this study regards DTI prediction as a link prediction problem and proposes an end-to-end model based on HETerogeneous graph with Attention mechanism (DTI-HETA). In this model, a heterogeneous graph is first constructed based on the drug-drug and target-target similarity matrices and the DTI matrix. Then, the graph convolutional neural network is utilized to obtain the embedded representation of the drugs and targets. To highlight the contribution of different neighborhood nodes to the central node in aggregating the graph convolution information, a graph attention mechanism is introduced into the node embedding process. Afterward, an inner product decoder is applied to predict DTIs. To evaluate the performance of DTI-HETA, experiments are conducted on two datasets. The experimental results show that our model is superior to the state-of-the-art methods. Also, the identification of novel DTIs indicates that DTI-HETA can serve as a powerful tool for integrating heterogeneous graph information to predict DTIs.
Collapse
Affiliation(s)
| | | | - Yuqi Wen
- Beijing Institute of Radiation Medicine, Beijing, China
| | | | - Song He
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaochen Bo
- Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
43
|
Wan X, Wu X, Wang D, Tan X, Liu X, Fu Z, Jiang H, Zheng M, Li X. An inductive graph neural network model for compound-protein interaction prediction based on a homogeneous graph. Brief Bioinform 2022; 23:6547264. [PMID: 35275993 PMCID: PMC9310259 DOI: 10.1093/bib/bbac073] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 01/10/2023] Open
Abstract
Identifying the potential compound–protein interactions (CPIs) plays an essential role in drug development. The computational approaches for CPI prediction can reduce time and costs of experimental methods and have benefited from the continuously improved graph representation learning. However, most of the network-based methods use heterogeneous graphs, which is challenging due to their complex structures and heterogeneous attributes. Therefore, in this work, we transformed the compound–protein heterogeneous graph to a homogeneous graph by integrating the ligand-based protein representations and overall similarity associations. We then proposed an Inductive Graph AggrEgator-based framework, named CPI-IGAE, for CPI prediction. CPI-IGAE learns the low-dimensional representations of compounds and proteins from the homogeneous graph in an end-to-end manner. The results show that CPI-IGAE performs better than some state-of-the-art methods. Further ablation study and visualization of embeddings reveal the advantages of the model architecture and its role in feature extraction, and some of the top ranked CPIs by CPI-IGAE have been validated by a review of recent literature. The data and source codes are available at https://github.com/wanxiaozhe/CPI-IGAE.
Collapse
Affiliation(s)
- Xiaozhe Wan
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Xiaolong Wu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Dingyan Wang
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | | | - Xiaohong Liu
- AlphaMa Inc., No. 108, Yuxin Road, Suzhou Industrial Park, Suzhou 215128, China
| | - Zunyun Fu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, 393 Huaxiazhong Road, Shanghai 200031, China
| | - Mingyue Zheng
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xutong Li
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|