1
|
Banayan NE, Hsu A, Hunt JF, Palmer AG, Friesner RA. Parsing Dynamics of Protein Backbone NH and Side-Chain Methyl Groups using Molecular Dynamics Simulations. J Chem Theory Comput 2024; 20:6316-6327. [PMID: 38957960 PMCID: PMC11528701 DOI: 10.1021/acs.jctc.4c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Experimental NMR spectroscopy and theoretical molecular dynamics (MD) simulations provide complementary insights into protein conformational dynamics and hence into biological function. The present work describes an extensive set of backbone NH and side-chain methyl group generalized order parameters for the Escherichia coli ribonuclease HI (RNH) enzyme derived from 2-μs microsecond MD simulations using the OPLS4 and AMBER-FF19SB force fields. The simulated generalized order parameters are compared with values derived from NMR 15N and 13CH2D spin relaxation measurements. The squares of the generalized order parameters, S2 for the N-H bond vector and Saxis2 for the methyl group symmetry axis, characterize the equilibrium distribution of vector orientations in a molecular frame of reference. Optimal agreement between simulated and experimental results was obtained by averaging S2 or Saxis2 calculated by dividing the simulated trajectories into 50 ns blocks (∼five times the rotational diffusion correlation time for RNH). With this procedure, the median absolute deviations (MAD) between experimental and simulated values of S2 and Saxis2 are 0.030 (NH) and 0.061 (CH3) for OPLS4 and 0.041 (NH) and 0.078 (CH3) for AMBER-FF19SB. The MAD between OPLS4 and AMBER-FF19SB are 0.021 (NH) and 0.072 (CH3). The generalized order parameters for the methyl group symmetry axis can be decomposed into contributions from backbone fluctuations, between-rotamer dihedral angle transitions, and within-rotamer dihedral angle fluctuations. Analysis of the simulation trajectories shows that (i) backbone and side chain conformational fluctuations exhibit little correlation and that (ii) fluctuations within rotamers are limited and highly uniform with values that depend on the number of dihedral angles considered. Low values of Saxis2, indicative of enhanced side-chain flexibility, result from between-rotamer transitions that can be enhanced by increased local backbone flexibility.
Collapse
Affiliation(s)
- Nooriel E. Banayan
- Department of Biological Sciences, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - Andrew Hsu
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - John F. Hunt
- Department of Biological Sciences, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - Arthur G. Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, 701 West 168th Street, New York, NY 10032, USA
| | - Richard A. Friesner
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
| |
Collapse
|
2
|
Zumpfe K, Berbon M, Habenstein B, Loquet A, Smith AA. Analytical Framework to Understand the Origins of Methyl Side-Chain Dynamics in Protein Assemblies. J Am Chem Soc 2024; 146:8164-8178. [PMID: 38476076 PMCID: PMC10979401 DOI: 10.1021/jacs.3c12620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Side-chain motions play an important role in understanding protein structure, dynamics, protein-protein, and protein-ligand interactions. However, our understanding of protein side-chain dynamics is currently limited by the lack of analytical tools. Here, we present a novel analytical framework employing experimental nuclear magnetic resonance (NMR) relaxation measurements at atomic resolution combined with molecular dynamics (MD) simulation to characterize with a high level of detail the methyl side-chain dynamics in insoluble protein assemblies, using amyloid fibrils formed by the prion HET-s. We use MD simulation to interpret experimental results, where rotameric hops, including methyl group rotation and χ1/χ2 rotations, cannot be completely described with a single correlation time but rather sample a broad distribution of correlation times, resulting from continuously changing local structure in the fibril. Backbone motion similarly samples a broad range of correlation times, from ∼100 ps to μs, although resulting from mostly different dynamic processes; nonetheless, we find that the backbone is not fully decoupled from the side-chain motion, where changes in side-chain dynamics influence backbone motion and vice versa. While the complexity of side-chain motion in protein assemblies makes it very challenging to obtain perfect agreement between experiment and simulation, our analytical framework improves the interpretation of experimental dynamics measurements for complex protein assemblies.
Collapse
Affiliation(s)
- Kai Zumpfe
- Institute
for Medical Physics and Biophysics, Leipzig
University, Härtelstraße
16-18, 04107 Leipzig, Germany
| | - Mélanie Berbon
- University
of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, 33600 Pessac, France
| | - Birgit Habenstein
- University
of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, 33600 Pessac, France
| | - Antoine Loquet
- University
of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, 33600 Pessac, France
| | - Albert A. Smith
- Institute
for Medical Physics and Biophysics, Leipzig
University, Härtelstraße
16-18, 04107 Leipzig, Germany
| |
Collapse
|
3
|
Champion C, Lehner M, Smith AA, Ferrage F, Bolik-Coulon N, Riniker S. Unraveling motion in proteins by combining NMR relaxometry and molecular dynamics simulations: A case study on ubiquitin. J Chem Phys 2024; 160:104105. [PMID: 38465679 DOI: 10.1063/5.0188416] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
Nuclear magnetic resonance (NMR) relaxation experiments shine light onto the dynamics of molecular systems in the picosecond to millisecond timescales. As these methods cannot provide an atomically resolved view of the motion of atoms, functional groups, or domains giving rise to such signals, relaxation techniques have been combined with molecular dynamics (MD) simulations to obtain mechanistic descriptions and gain insights into the functional role of side chain or domain motion. In this work, we present a comparison of five computational methods that permit the joint analysis of MD simulations and NMR relaxation experiments. We discuss their relative strengths and areas of applicability and demonstrate how they may be utilized to interpret the dynamics in MD simulations with the small protein ubiquitin as a test system. We focus on the aliphatic side chains given the rigidity of the backbone of this protein. We find encouraging agreement between experiment, Markov state models built in the χ1/χ2 rotamer space of isoleucine residues, explicit rotamer jump models, and a decomposition of the motion using ROMANCE. These methods allow us to ascribe the dynamics to specific rotamer jumps. Simulations with eight different combinations of force field and water model highlight how the different metrics may be employed to pinpoint force field deficiencies. Furthermore, the presented comparison offers a perspective on the utility of NMR relaxation to serve as validation data for the prediction of kinetics by state-of-the-art biomolecular force fields.
Collapse
Affiliation(s)
- Candide Champion
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Marc Lehner
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Albert A Smith
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Fabien Ferrage
- Laboratoire des Biomolécules, LBM, Département de Chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Nicolas Bolik-Coulon
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Sereina Riniker
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
4
|
Heckmeier PJ, Ruf J, Rochereau C, Hamm P. A billion years of evolution manifest in nanosecond protein dynamics. Proc Natl Acad Sci U S A 2024; 121:e2318743121. [PMID: 38412135 DOI: 10.1073/pnas.2318743121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Protein dynamics form a critical bridge between protein structure and function, yet the impact of evolution on ultrafast processes inside proteins remains enigmatic. This study delves deep into nanosecond-scale protein dynamics of a structurally and functionally conserved protein across species separated by almost a billion years, investigating ten homologs in complex with their ligand. By inducing a photo-triggered destabilization of the ligand inside the binding pocket, we resolved distinct kinetic footprints for each homolog via transient infrared spectroscopy. Strikingly, we found a cascade of rearrangements within the protein complex which manifest in time points of increased dynamic activity conserved over hundreds of millions of years within a narrow window. Among these processes, one displays a subtle temporal shift correlating with evolutionary divergence, suggesting reduced selective pressure in the past. Our study not only uncovers the impact of evolution on molecular processes in a specific case, but has also the potential to initiate a field of scientific inquiry within molecular paleontology, where species are compared and classified based on the rapid pace of protein dynamic processes; a field which connects the shortest conceivable time scale in living matter (10[Formula: see text] s) with the largest ones (10[Formula: see text] s).
Collapse
Affiliation(s)
| | - Jeannette Ruf
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | | | - Peter Hamm
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
5
|
Nencini R, Regnier MLG, Backlund SM, Mantzari E, Dunn CD, Ollila OHS. Probing the dynamic landscape of peptides in molecular assemblies by synergized NMR experiments and MD simulations. Commun Chem 2024; 7:28. [PMID: 38351219 PMCID: PMC10864328 DOI: 10.1038/s42004-024-01115-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
Peptides or proteins containing small biomolecular aggregates, such as micelles, bicelles, droplets and nanodiscs, are pivotal in many fields ranging from structural biology to pharmaceutics. Monitoring dynamics of such systems has been limited by the lack of experimental methods that could directly detect their fast (picosecond to nanosecond) timescale dynamics. Spin relaxation times from NMR experiments are sensitive to such motions, but their interpretation for biomolecular aggregates is not straightforward. Here we show that the dynamic landscape of peptide-containing molecular assemblies can be determined by a synergistic combination of solution state NMR experiments and molecular dynamics (MD) simulations. Solution state NMR experiments are straightforward to implement without an excessive amount of sample, while direct combination of spin relaxation data to MD simulations enables interpretation of dynamic landscapes of peptides and other aggregated molecules. To demonstrate this, we interpret NMR data from transmembrane, peripheral, and tail anchored peptides embedded in micelles. Our results indicate that peptides and detergent molecules do not rotate together as a rigid body, but peptides rotate in a viscous medium composed of detergent micelle. Spin relaxation times also provide indirect information on peptide conformational ensembles. This work gives new perspectives on peptide dynamics in complex biomolecular assemblies.
Collapse
Affiliation(s)
- Ricky Nencini
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | | - Sofia M Backlund
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Cory D Dunn
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - O H Samuli Ollila
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
- VTT Technical Research Centre of Finland, Espoo, Finland.
| |
Collapse
|
6
|
Widmalm G. Glycan Shape, Motions, and Interactions Explored by NMR Spectroscopy. JACS AU 2024; 4:20-39. [PMID: 38274261 PMCID: PMC10807006 DOI: 10.1021/jacsau.3c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024]
Abstract
Glycans in the form of oligosaccharides, polysaccharides, and glycoconjugates are ubiquitous in nature, and their structures range from linear assemblies to highly branched and decorated constructs. Solution state NMR spectroscopy facilitates elucidation of preferred conformations and shapes of the saccharides, motions, and dynamic aspects related to processes over time as well as the study of transient interactions with proteins. Identification of intermolecular networks at the atomic level of detail in recognition events by carbohydrate-binding proteins known as lectins, unraveling interactions with antibodies, and revealing substrate scope and action of glycosyl transferases employed for synthesis of oligo- and polysaccharides may efficiently be analyzed by NMR spectroscopy. By utilizing NMR active nuclei present in glycans and derivatives thereof, including isotopically enriched compounds, highly detailed information can be obtained by the experiments. Subsequent analysis may be aided by quantum chemical calculations of NMR parameters, machine learning-based methodologies and artificial intelligence. Interpretation of the results from NMR experiments can be complemented by extensive molecular dynamics simulations to obtain three-dimensional dynamic models, thereby clarifying molecular recognition processes involving the glycans.
Collapse
Affiliation(s)
- Göran Widmalm
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
7
|
Islam MM, Nawagamuwage SU, Parshin IV, Richard MC, Burin AL, Rubtsov IV. Probing the Hydrophobic Region of a Lipid Bilayer at Specific Depths Using Vibrational Spectroscopy. J Am Chem Soc 2023; 145:26363-26373. [PMID: 37982703 DOI: 10.1021/jacs.3c10178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
A novel spectroscopic approach for studying the flexibility and mobility in the hydrophobic interior of lipid bilayers at specific depths is proposed. A set of test compounds featuring an azido moiety and a cyano or carboxylic acid moiety, connected by an alkyl chain of different lengths, was synthesized. FTIR data and molecular dynamics calculations indicated that the test compounds in a bilayer are oriented so that the cyano or carboxylic acid moiety is located in the lipid head-group region, while the azido group stays inside the bilayer at the depth determined by its alkyl chain length. We found that the asymmetric stretching mode of the azido group (νN3) can serve as a reporter of the membrane interior dynamics. FTIR and two-dimensional infrared (2DIR) studies were performed at different temperatures, ranging from 22 to 45 °C, covering the Lβ-Lα phase transition temperature of dipalmitoylphosphatidylcholine (∼41 °C). The width of the νN3 peak was found to be very sensitive to the phase transition and to the temperature in general. We introduced an order parameter, SN3, which characterizes restrictions to motion inside the bilayer. 2DIR spectra of νN3 showed different extents of inhomogeneity at different depths in the bilayer, with the smallest inhomogeneity in the middle of the leaflet. The spectral diffusion dynamics of the N3 peak was found to be dependent on the depth of the N3 group location in the bilayer. The obtained results enhance our understanding of the bilayer dynamics and can be extended to investigate membranes with more complex compositions.
Collapse
Affiliation(s)
- Md Muhaiminul Islam
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | | | - Igor V Parshin
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Margaret C Richard
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Alexander L Burin
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Igor V Rubtsov
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
8
|
Querci L, Grifagni D, Trindade IB, Silva JM, Louro RO, Cantini F, Piccioli M. Paramagnetic NMR to study iron sulfur proteins: 13C detected experiments illuminate the vicinity of the metal center. JOURNAL OF BIOMOLECULAR NMR 2023; 77:247-259. [PMID: 37853207 PMCID: PMC10687126 DOI: 10.1007/s10858-023-00425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
The robustness of NMR coherence transfer in proximity of a paramagnetic center depends on the relaxation properties of the nuclei involved. In the case of Iron-Sulfur Proteins, different pulse schemes or different parameter sets often provide complementary results. Tailored versions of HCACO and CACO experiments significantly increase the number of observed Cα/C' connectivities in highly paramagnetic systems, by recovering many resonances that were lost due to paramagnetic relaxation. Optimized 13C direct detected experiments can significantly extend the available assignments, improving the overall knowledge of these systems. The different relaxation properties of Cα and C' nuclei are exploited in CACO vs COCA experiments and the complementarity of the two experiments is used to obtain structural information. The two [Fe2S2]+ clusters containing NEET protein CISD3 and the one [Fe4S4]2+ cluster containing HiPIP protein PioC have been taken as model systems. We show that tailored experiments contribute to decrease the blind sphere around the cluster, to extend resonance assignment of cluster bound cysteine residues and to retrieve details on the topology of the iron-bound ligand residues.
Collapse
Affiliation(s)
- Leonardo Querci
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Deborah Grifagni
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Inês B Trindade
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Av. da República (EAN), 2780-157, Oeiras, Portugal
- Division of Biology and Biological Engineering, California Institute of Technology, CA 91125, Pasadena, USA
| | - José Malanho Silva
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Av. da República (EAN), 2780-157, Oeiras, Portugal
| | - Francesca Cantini
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Mario Piccioli
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
9
|
Robinson SL. Structure-guided metagenome mining to tap microbial functional diversity. Curr Opin Microbiol 2023; 76:102382. [PMID: 37741262 DOI: 10.1016/j.mib.2023.102382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/21/2023] [Accepted: 08/22/2023] [Indexed: 09/25/2023]
Abstract
Scientists now have access to millions of accurate three-dimensional (3D) models of protein structures. How do we leverage 3D structural models to learn about microbial functions encoded in metagenomes? Here, we review recent developments using protein structural features to mine metagenomes from diverse environments ranging from the human gut to soil and ocean viromes. We compare 3D protein structural methods to characterize antibiotic resistance phenotypes, nutrient cycling, and host-drug-microbe interactions. Broadly, we encourage the scientific community to look beyond global sequence and structure alignments by considering fine-grained descriptors such as distance to ligand, active site, and tertiary interactions between amino acid residues scaling to microbiomes. Finally, we highlight structure-inspired approaches to chart new areas of microbial protein-coding sequence space.
Collapse
Affiliation(s)
- Serina L Robinson
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Dübendorf, Switzerland.
| |
Collapse
|
10
|
Agback T, Lesovoy D, Han X, Lomzov A, Sun R, Sandalova T, Orekhov VY, Achour A, Agback P. Combined NMR and molecular dynamics conformational filter identifies unambiguously dynamic ensembles of Dengue protease NS2B/NS3pro. Commun Biol 2023; 6:1193. [PMID: 38001280 PMCID: PMC10673835 DOI: 10.1038/s42003-023-05584-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The dengue protease NS2B/NS3pro has been reported to adopt either an 'open' or a 'closed' conformation. We have developed a conformational filter that combines NMR with MD simulations to identify conformational ensembles that dominate in solution. Experimental values derived from relaxation parameters for the backbone and methyl side chains were compared with the corresponding back-calculated relaxation parameters of different conformational ensembles obtained from free MD simulations. Our results demonstrate a high prevalence for the 'closed' conformational ensemble while the 'open' conformation is absent, indicating that the latter conformation is most probably due to crystal contacts. Conversely, conformational ensembles in which the positioning of the co-factor NS2B results in a 'partially' open conformation, previously described in both MD simulations and X-ray studies, were identified by our conformational filter. Altogether, we believe that our approach allows for unambiguous identification of true conformational ensembles, an essential step for reliable drug discovery.
Collapse
Affiliation(s)
- Tatiana Agback
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, SE-750 07, Uppsala, Sweden
| | - Dmitry Lesovoy
- Department of Structural Biology, Shemyakin-Ovchinnikov, Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
- Swedish NMR Centre, University of Gothenburg, Box 465, 40530, Gothenburg, Sweden
| | - Xiao Han
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Alexander Lomzov
- Laboratory of Structural Biology, Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090, Novosibirsk, Russia
| | - Renhua Sun
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Vladislav Yu Orekhov
- Swedish NMR Centre, University of Gothenburg, Box 465, 40530, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 465, 40530, Gothenburg, Sweden
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, SE-171 76, Stockholm, Sweden.
| | - Peter Agback
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, SE-750 07, Uppsala, Sweden.
| |
Collapse
|
11
|
Kümmerer F, Orioli S, Lindorff-Larsen K. Fitting Force Field Parameters to NMR Relaxation Data. J Chem Theory Comput 2023. [PMID: 37276045 DOI: 10.1021/acs.jctc.3c00174] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present an approach to optimize force field parameters using time-dependent data from NMR relaxation experiments. To do so, we scan parameters in the dihedral angle potential energy terms describing the rotation of the methyl groups in proteins and compare NMR relaxation rates calculated from molecular dynamics simulations with the modified force fields to deuterium relaxation measurements of T4 lysozyme. We find that a small modification of Cγ methyl groups improves the agreement with experiments both for the protein used to optimize the force field and when validating using simulations of CI2 and ubiquitin. We also show that these improvements enable a more effective a posteriori reweighting of the MD trajectories. The resulting force field thus enables more direct comparison between simulations and side-chain NMR relaxation data and makes it possible to construct ensembles that better represent the dynamics of proteins in solution.
Collapse
Affiliation(s)
- Felix Kümmerer
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Simone Orioli
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
- Structural Biophysics, Niels Bohr Institute, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
12
|
Guseva S, Schnapka V, Adamski W, Maurin D, Ruigrok RWH, Salvi N, Blackledge M. Liquid-Liquid Phase Separation Modifies the Dynamic Properties of Intrinsically Disordered Proteins. J Am Chem Soc 2023; 145:10548-10563. [PMID: 37146977 DOI: 10.1021/jacs.2c13647] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Liquid-liquid phase separation of flexible biomolecules has been identified as a ubiquitous phenomenon underlying the formation of membraneless organelles that harbor a multitude of essential cellular processes. We use nuclear magnetic resonance (NMR) spectroscopy to compare the dynamic properties of an intrinsically disordered protein (measles virus NTAIL) in the dilute and dense phases at atomic resolution. By measuring 15N NMR relaxation at different magnetic field strengths, we are able to characterize the dynamics of the protein in dilute and crowded conditions and to compare the amplitude and timescale of the different motional modes to those present in the membraneless organelle. Although the local backbone conformational sampling appears to be largely retained, dynamics occurring on all detectable timescales, including librational, backbone dihedral angle dynamics and segmental, chainlike motions, are considerably slowed down. Their relative amplitudes are also drastically modified, with slower, chain-like motions dominating the dynamic profile. In order to provide additional mechanistic insight, we performed extensive molecular dynamics simulations of the protein under self-crowding conditions at concentrations comparable to those found in the dense liquid phase. Simulation broadly reproduces the impact of formation of the condensed phase on both the free energy landscape and the kinetic interconversion between states. In particular, the experimentally observed reduction in the amplitude of the fastest component of backbone dynamics correlates with higher levels of intermolecular contacts or entanglement observed in simulations, reducing the conformational space available to this mode under strongly self-crowding conditions.
Collapse
Affiliation(s)
- Serafima Guseva
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Vincent Schnapka
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Wiktor Adamski
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Damien Maurin
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Rob W H Ruigrok
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Nicola Salvi
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Martin Blackledge
- Institut de Biologie Structurale, Université Grenoble Alpes-CEA-CNRS, 71, Avenue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
13
|
Abyzov A, Mandelkow E, Zweckstetter M, Rezaei-Ghaleh N. Fast Motions Dominate Dynamics of Intrinsically Disordered Tau Protein at High Temperatures. Chemistry 2023; 29:e202203493. [PMID: 36579699 DOI: 10.1002/chem.202203493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
Reorientational dynamics of intrinsically disordered proteins (IDPs) contain multiple motions often clustered around three motional modes: ultrafast librational motions of amide groups, fast local backbone conformational fluctuations and slow chain segmental motions. This dynamic picture is mainly based on 15 N NMR relaxation studies of IDPs at relatively low temperatures where the amide-water proton exchange rates are sufficiently small. Less is known, however, about the dynamics of IDPs at more physiological temperatures. Here, we investigate protein dynamics in a 441-residue long IDP, tau protein, in the temperature range from 0-25 °C, using 15 N NMR relaxation rates and spectral density analysis. While at these temperatures relaxation rates are still better described in terms of amide group librational motions, local backbone dynamics and chain segmental motions, the temperature-dependent trend of spectral densities suggests that the timescales of fast backbone conformational fluctuations and slower chain segmental motions might become inseparable at higher temperatures. Our data demonstrate the remarkable dynamic plasticity of this prototypical IDP and highlight the need for dynamic studies of IDPs at multiple temperatures.
Collapse
Affiliation(s)
- Anton Abyzov
- Translational Structural Biology Group, German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, D-37075, Göttingen, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, D-53127, Bonn, Germany
- Research Center CAESAR, Ludwig-Erhard-Allee 2, D-53175, Bonn, Germany
| | - Markus Zweckstetter
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
- Translational Structural Biology Group, German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, D-37075, Göttingen, Germany
| | - Nasrollah Rezaei-Ghaleh
- Institute of Physical Biology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
- Institute of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, D-52428, Jülich, Germany
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
| |
Collapse
|
14
|
Ali AAAI, Hoffmann F, Schäfer LV, Mulder FAA. Probing Methyl Group Dynamics in Proteins by NMR Cross-Correlated Dipolar Relaxation and Molecular Dynamics Simulations. J Chem Theory Comput 2022; 18:7722-7732. [PMID: 36326619 DOI: 10.1021/acs.jctc.2c00568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nuclear magnetic resonance (NMR) spin relaxation is the most informative approach to experimentally probe the internal dynamics of proteins on the picosecond to nanosecond time scale. At the same time, molecular dynamics (MD) simulations of biological macromolecules are steadily improving through better physical models, enhanced sampling methods, and increased computational power, and they provide exquisite information about flexibility and its role in protein stability and molecular interactions. Many examples have shown that MD is now adept in probing protein backbone motion, but improvements are still required toward a quantitative description of the dynamics of side chains, for example, probed by the dynamics of methyl groups. Thus far, the comparison of computation with experiment for side chain dynamics has primarily focused on the relaxation of 13C and 2H nuclei induced by autocorrelated variation of spin interactions. However, the cross-correlation of 13C-1H dipolar interactions in methyl groups offers an attractive alternative. Here, we establish a computational framework to extract cross-correlation relaxation parameters of methyl groups in proteins from all-atom MD simulations. To demonstrate the utility of the approach, cross-correlation relaxation rates of ubiquitin are computed from MD simulations performed with the AMBER99SB*-ILDN and CHARMM36 force fields. Simulation results were found to agree well with those obtained by experiment. Moreover, the data obtained with the two force fields are highly consistent.
Collapse
Affiliation(s)
- Ahmed A A I Ali
- Theoretical Chemistry, Ruhr University Bochum, D-44780Bochum, Germany
| | - Falk Hoffmann
- Theoretical Chemistry, Ruhr University Bochum, D-44780Bochum, Germany
| | - Lars V Schäfer
- Theoretical Chemistry, Ruhr University Bochum, D-44780Bochum, Germany
| | - Frans A A Mulder
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000Aarhus, Denmark
| |
Collapse
|