1
|
Gholami A, Mousavi SM, Masoumzadeh R, Binazadeh M, Bagheri Lankarani K, Omidifar N, Arjmand O, Chiang WH, Moghadami M, Pynadathu Rumjit N. Advanced Theranostic Strategies for Viral Hepatitis Using Carbon Nanostructures. MICROMACHINES 2023; 14:1185. [PMID: 37374770 DOI: 10.3390/mi14061185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
There are several treatment protocols for acute viral hepatitis, and it is critical to recognize acute hepatitis in its earliest stages. Public health measures to control these infections also rely on rapid and accurate diagnosis. The diagnosis of viral hepatitis remains expensive, and there is no adequate public health infrastructure, while the virus is not well-controlled. New methods for screening and detecting viral hepatitis through nanotechnology are being developed. Nanotechnology significantly reduces the cost of screening. In this review, the potential of three-dimensional-nanostructured carbon substances as promising materials due to fewer side effects, and the contribution of these particles to effective tissue transfer in the treatment and diagnosis of hepatitis due to the importance of rapid diagnosis for successful treatment, were extensively investigated. In recent years, three-dimensional carbon nanomaterials such as graphene oxide and nanotubes with special chemical, electrical, and optical properties have been used for the diagnosis and treatment of hepatitis due to their high potential. We expect that the future position of nanoparticles in the rapid diagnosis and treatment of viral hepatitis can be better determined.
Collapse
Affiliation(s)
- Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz 71439-14693, Iran
- Pharmaceutical Sciences Research Center, Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Shiraz University of Medical Science, Shiraz 71439-14693, Iran
| | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Reza Masoumzadeh
- Department of Medical, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz 71557-13876, Iran
| | - Kamran Bagheri Lankarani
- Health Policy Research Center, Health Institute, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Navid Omidifar
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz 71439-14693, Iran
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Omid Arjmand
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran 14687-63785, Iran
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Mohsen Moghadami
- Non-Communicable Diseases Research Center, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| | - Nelson Pynadathu Rumjit
- Nanotechnology and Catalysis Research Centre (NANOCAT), Level 3, Block A, Institute for Advanced Studies (IAS), University of Malaya (UM), Kuala Lumpur 50603, Malaysia
| |
Collapse
|
2
|
Abdulhameed A, Halim MM, Halin IA. Dielectrophoretic alignment of carbon nanotubes: theory, applications, and future. NANOTECHNOLOGY 2023; 34:242001. [PMID: 36921341 DOI: 10.1088/1361-6528/acc46c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Carbon nanotubes (CNTs) are nominated to be the successor of several semiconductors and metals due to their unique physical and chemical properties. It has been concerning that the anisotropic and low controllability of CNTs impedes their adoption in commercial applications. Dielectrophoresis (DEP) is known as the electrokinetics motion of polarizable nanoparticles under the influence of nonuniform electric fields. The uniqueness of this phenomenon allows DEP to be employed as a novel method to align, assemble, separate, and manipulate CNTs suspended in liquid mediums. This article begins with a brief overview of CNT structure and production, with the emphasize on their electrical properties and response to electric fields. The DEP phenomenon as a CNT alignment method is demonstrated and graphically discussed, along with its theory, procedure, and parameters. We also discussed the side forces that arise in DEP systems and how they negatively or positively affect the CNT alignment. The article concludes with a brief review of CNT-based devices fabricated using DEP, as well as the method's limitations and future prospects.
Collapse
Affiliation(s)
| | - Mohd Mahadi Halim
- School of Physics, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
| | - Izhal Abdul Halin
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| |
Collapse
|
3
|
Wei S, Chen X, Zhang X, Chen L. Recent Development of Graphene Based Electrochemical Sensor for Detecting Hematological Malignancies-Associated Biomarkers: A Mini-Review. Front Chem 2021; 9:735668. [PMID: 34513800 PMCID: PMC8423913 DOI: 10.3389/fchem.2021.735668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
Hematologic malignancies are a group of malignant diseases of the hematologic system that seriously endanger human health, mainly involving bone marrow, blood and lymphatic tissues. However, among the available treatments for malignant hematologic diseases, low detection rates and high recurrence rates are major problems in the treatment process. The quantitative detection of hematologic malignancies-related biomarkers is the key to refine the pathological typing of the disease to implement targeted therapy and thus improve the prognosis. In recent years, bioelectrochemical methods for tumor cell and blood detection have attracted the attention of an increasing number of scientists. The development of biosensor technology, nanotechnology, probe technology, and lab-on-a-chip technology has greatly facilitated the development of bioelectrochemical studies of cells, especially for blood and cell-based assays and drug resistance differentiation. To improve the sensitivity of detection, graphene is often used in the design of electrochemical sensors. This mini-review provides an overview of the types of hematological malignancies-associated biomarkers and their detection based on graphene assisted electrochemical sensors.
Collapse
Affiliation(s)
- Shougang Wei
- Department of Pediatrics, Yidu Central Hospital, Weifang, China
| | - Xiuju Chen
- Department of Public Health, Yidu Central Hospital, Weifang, China
| | - Xinyu Zhang
- Shandong Freda Pharmaceutical Group Co., Ltd, Linshu, China
| | - Lei Chen
- Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| |
Collapse
|
4
|
Jain N, Gupta E, Kanu NJ. Plethora of Carbon Nanotubes Applications in Various Fields – A State-of-the-Art-Review. SMART SCIENCE 2021. [DOI: 10.1080/23080477.2021.1940752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Nidhi Jain
- Department of Engineering Science, Bharati Vidyapeeth College of Engineering, Lavale, Pune, India
| | - Eva Gupta
- Department of Electrical Engineering, ASET, Amity University, Noida, India
- Department of Electrical Engineering, TSSM’s Bhivrabai Sawant College of Engineering and Research, Pune, Maharashtra, India
| | - Nand Jee Kanu
- Department of Mechanical Engineering, S. V. National Institute of Technology, Surat, India
- Department of Mechanical Engineering, JSPM Narhe Technical Campus, Pune, India
| |
Collapse
|
5
|
Iannazzo D, Espro C, Celesti C, Ferlazzo A, Neri G. Smart Biosensors for Cancer Diagnosis Based on Graphene Quantum Dots. Cancers (Basel) 2021; 13:3194. [PMID: 34206792 PMCID: PMC8269110 DOI: 10.3390/cancers13133194] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/29/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
The timely diagnosis of cancer represents the best chance to increase treatment success and to reduce cancer deaths. Nanomaterials-based biosensors containing graphene quantum dots (GQDs) as a sensing platform show great promise in the early and sensitive detection of cancer biomarkers, due to their unique chemical and physical properties, large surface area and ease of functionalization with different biomolecules able to recognize relevant cancer biomarkers. In this review, we report different advanced strategies for the synthesis and functionalization of GQDs with different agents able to selectively recognize and convert into a signal specific cancer biomarkers such as antigens, enzymes, hormones, proteins, cancer related byproducts, biomolecules exposed on the surface of cancer cells and changes in pH. The developed optical, electrochemical and chemiluminescent biosensors based on GQDs have been shown to ensure the effective diagnosis of several cancer diseases as well as the possibility to evaluate the effectiveness of anticancer therapy. The wide linear range of detection and low detection limits recorded for most of the reported biosensors highlight their great potential in clinics for the diagnosis and management of cancer.
Collapse
Affiliation(s)
- Daniela Iannazzo
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy; (C.E.); (C.C.); (A.F.); (G.N.)
| | | | | | | | | |
Collapse
|
6
|
Effect of the AACVD based synthesis atmosphere on the structural properties of multi-walled carbon nanotubes. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
Multidimensional (0D-3D) nanostructures for lung cancer biomarker analysis: Comprehensive assessment on current diagnostics. Biosens Bioelectron 2019; 141:111434. [DOI: 10.1016/j.bios.2019.111434] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022]
|
8
|
Investigation of ZnO-decorated CNTs for UV Light Detection Applications. NANOMATERIALS 2019; 9:nano9081099. [PMID: 31370341 PMCID: PMC6722801 DOI: 10.3390/nano9081099] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/18/2019] [Accepted: 07/29/2019] [Indexed: 12/01/2022]
Abstract
Multi-walled carbon nanotubes (CNTs) decorated with zinc oxide nanoparticles (ZnO NPs) were prepared in isopropanol solution by a simple, room-temperature process and characterized from structural, morphological, electronic, and optical points of view. A strong interaction between ZnO and CNTs is fully confirmed by all the characterization techniques. ZnO-CNTs nanocomposites, with different weight ratios, were deposited as a dense layer between two electrodes, in order to investigate the electrical behaviour. In particular, the electrical response of the nanocomposite layers to UV light irradiation was recorded for a fixed voltage: As the device is exposed to the UV lamp, a sharp current drop takes place and then an increase is observed as the irradiation is stopped. The effect can be explained by adsorption and desorption phenomena taking place on the ZnO nanoparticle surface under irradiation and by charge transfer between ZnO and CNTs, thanks to the strong interaction between the two nanomaterials. The nanocomposite material shows good sensitivity and fast response to UV irradiation. Room temperature and low-cost processes used for the device preparation combined with room temperature and low voltage operational conditions make this methodology very promising for large scale UV detectors applications.
Collapse
|
9
|
The Advances in Biomedical Applications of Carbon Nanotubes. C — JOURNAL OF CARBON RESEARCH 2019. [DOI: 10.3390/c5020029] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Unique chemical, physical, and biological features of carbon nanotubes make them an ideal candidate for myriad applications in industry and biomedicine. Carbon nanotubes have excellent electrical and thermal conductivity, high biocompatibility, flexibility, resistance to corrosion, nano-size, and a high surface area, which can be tailored and functionalized on demand. This review discusses the progress and main fields of bio-medical applications of carbon nanotubes based on recently-published reports. It encompasses the synthesis of carbon nanotubes and their application for bio-sensing, cancer treatment, hyperthermia induction, antibacterial therapy, and tissue engineering. Other areas of carbon nanotube applications were out of the scope of this review. Special attention has been paid to the problem of the toxicity of carbon nanotubes.
Collapse
|
10
|
Maiti D, Tong X, Mou X, Yang K. Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study. Front Pharmacol 2019; 9:1401. [PMID: 30914959 PMCID: PMC6421398 DOI: 10.3389/fphar.2018.01401] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023] Open
Abstract
The study of carbon-based nanomaterials (CBNs) for biomedical applications has attracted great attention due to their unique chemical and physical properties including thermal, mechanical, electrical, optical and structural diversity. With the help of these intrinsic properties, CBNs, including carbon nanotubes (CNT), graphene oxide (GO), and graphene quantum dots (GQDs), have been extensively investigated in biomedical applications. This review summarizes the most recent studies in developing of CBNs for various biomedical applications including bio-sensing, drug delivery and cancer therapy.
Collapse
Affiliation(s)
- Debabrata Maiti
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xiangmin Tong
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Xiaozhou Mou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
11
|
Iannazzo D, Ziccarelli I, Pistone A. Graphene quantum dots: multifunctional nanoplatforms for anticancer therapy. J Mater Chem B 2017; 5:6471-6489. [DOI: 10.1039/c7tb00747g] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We review the recent advances in the application of GQDs as innovative nanoplatforms for anticancer therapy and bioimaging.
Collapse
Affiliation(s)
- Daniela Iannazzo
- Dipartimento di Ingegneria
- University of Messina
- Contrada Di Dio
- Italy
| | - Ida Ziccarelli
- Dipartimento di Ingegneria
- University of Messina
- Contrada Di Dio
- Italy
| | | |
Collapse
|