1
|
Carota AG, Bonini A, Urban M, Poma N, Vivaldi FM, Tavanti A, Rossetti M, Rosati G, Merkoçi A, Di Francesco F. Low-cost inkjet-printed nanostructured biosensor based on CRISPR/Cas12a system for pathogen detection. Biosens Bioelectron 2024; 258:116340. [PMID: 38718633 DOI: 10.1016/j.bios.2024.116340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
The escalating global incidence of infectious diseases caused by pathogenic bacteria, especially in developing countries, emphasises the urgent need for rapid and portable pathogen detection devices. This study introduces a sensitive and specific electrochemical biosensing platform utilising cost-effective electrodes fabricated by inkjet-printing gold and silver nanoparticles on a plastic substrate. The biosensor exploits the CRISPR/Cas12a system for detecting a specific DNA sequence selected from the genome of the target pathogen. Upon detection, the trans-activity of Cas12a/gRNA is triggered, leading to the cleavage of rationally designed single-strand DNA reporters (linear and hairpin) labelled with methylene blue (ssDNA-MB) and bound to the electrode surface. In principle, this sensing mechanism can be adapted to any bacterium by choosing a proper guide RNA to target a specific sequence of its DNA. The biosensor's performance was assessed for two representative pathogens (a Gram-negative, Escherichia coli, and a Gram-positive, Staphylococcus aureus), and results obtained with inkjet-printed gold electrodes were compared with those obtained by commercial screen-printed gold electrodes. Our results show that the use of inkjet-printed nanostructured gold electrodes, which provide a large surface area, in combination with the use of hairpin reporters containing a poly-T loop can increase the sensitivity of the assay corresponding to a signal variation of 86%. DNA targets amplified from various clinically isolated bacteria, have been tested and demonstrate the potential of the proposed platform for point-of-need applications.
Collapse
Affiliation(s)
- Angela Gilda Carota
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Andrea Bonini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy; Department of Biology, University of Pisa, Via San Zeno 37, 56127 Pisa, Italy.
| | - Massimo Urban
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Noemi Poma
- Department of Biology, University of Pisa, Via San Zeno 37, 56127 Pisa, Italy
| | - Federico Maria Vivaldi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Arianna Tavanti
- Department of Biology, University of Pisa, Via San Zeno 37, 56127 Pisa, Italy
| | - Marianna Rossetti
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Giulio Rosati
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy.
| |
Collapse
|
2
|
Urban M, Rosati G, Maroli G, Pelle FD, Bonini A, Sajti L, Fedel M, Merkoçi A. Nanostructure Tuning of Gold Nanoparticles Films via Click Sintering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2306167. [PMID: 37963854 DOI: 10.1002/smll.202306167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/26/2023] [Indexed: 11/16/2023]
Abstract
Colloidal metal nanoparticles dispersions are commonly used to create functional printed electronic devices and they typically require time-, energy- and equipment-consuming post-treatments to improve their electrical and mechanical properties. Traditional methods, e.g. thermal, UV/IR, and microwave treatments, limit the substrate options and may require expensive equipment, not available in all the laboratories. Moreover, these processes also cause the collapse of the film (nano)pores and interstices, limiting or impeding its nanostructuration. Finding a simple approach to obtain complex nanostructured materials with minimal post-treatments remains a challenge. In this study, a new sintering method for gold nanoparticle inks that called as "click sintering" has been reported. The method uses a catalytic reaction to enhance and tune the nanostructuration of the film while sintering the metallic nanoparticles, without requiring any cumbersome post-treatment. This results in a conductive and electroactive nanoporous thin film, whose properties can be tuned by the conditions of the reaction, i.e., concentration of the reagent and time. Therefore, this study presents a novel and innovative one-step approach to simultaneously sinter gold nanoparticles films and create functional nanostructures, directly and easily, introducing a new concept of real-time treatment with possible applications in the fields of flexible electronics, biosensing, energy, and catalysis.
Collapse
Affiliation(s)
- Massimo Urban
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Doctorado en Biotecnología, Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, Barcelona, 08193, Spain
| | - Giulio Rosati
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Gabriel Maroli
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Flavio Della Pelle
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Department of Bioscience and Technology for Food, Agriculture, and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, Teramo, 64100, Italy
| | - Andrea Bonini
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Department of Chemistry and Industrial Chemistry, University of Pisa, via Giuseppe Moruzzi 13, Pisa, 56124, Italy
| | - Laszlo Sajti
- Nano-Engineering Group, RHP Technology GmbH, Seibersdorf, 2444, Austria
| | - Mariangela Fedel
- Nano-Engineering Group, RHP Technology GmbH, Seibersdorf, 2444, Austria
| | - Arben Merkoçi
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain
| |
Collapse
|
3
|
Cataldo A, La Pietra M, Zappelli L, Mencarelli D, Pierantoni L, Bellucci S. MacGyvered Multiproperty Materials Using Nanocarbon and Jam: A Spectroscopic, Electromagnetic, and Rheological Investigation. J Funct Biomater 2022; 13:5. [PMID: 35076523 PMCID: PMC8788530 DOI: 10.3390/jfb13010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022] Open
Abstract
As part of a biopolymer matrix, pectin was investigated to obtain an engineered jam, due to its biodegradability. Only a few examples of pectin-based nanocomposites are present in the literature, and even fewer such bionanocomposites utilize nanocarbon as a filler-mostly for use in food packaging. In the present paper, ecofriendly nanocomposites made from household reagents and displaying multiple properties are presented. In particular, the electrical behavior and viscoelastic properties of a commercial jam were modulated by loading the jam with carbon nanotubes and graphene nanoplates. A new nanocomposite class based on commercial jam was studied, estimating the percolation threshold for each filler. The electrical characterization and the rheological measurements suggest that the behavior above the percolation threshold is influenced by the different morphology-i.e., one-dimensional or two-dimensional-of the fillers. These outcomes encourage further studies on the use of household materials in producing advanced and innovative materials, in order to reduce the environmental impact of new technologies, without giving up advanced devices endowed with different physical properties.
Collapse
Affiliation(s)
- Antonino Cataldo
- ENEA Centro Ricerche Casaccia, DISPREV Santa Maria di Galeria, 00123 Rome, Italy
- Department of Information Engineering, Polytechnic University of Marche, 60131 Ancona, Italy; (L.Z.); (D.M.); (L.P.)
- National Institute of Nuclear Physics (INFN), National Laboratories of Frascati, 00044 Frascati, Italy; (M.L.P.); (S.B.)
| | - Matteo La Pietra
- National Institute of Nuclear Physics (INFN), National Laboratories of Frascati, 00044 Frascati, Italy; (M.L.P.); (S.B.)
| | - Leonardo Zappelli
- Department of Information Engineering, Polytechnic University of Marche, 60131 Ancona, Italy; (L.Z.); (D.M.); (L.P.)
| | - Davide Mencarelli
- Department of Information Engineering, Polytechnic University of Marche, 60131 Ancona, Italy; (L.Z.); (D.M.); (L.P.)
| | - Luca Pierantoni
- Department of Information Engineering, Polytechnic University of Marche, 60131 Ancona, Italy; (L.Z.); (D.M.); (L.P.)
| | - Stefano Bellucci
- National Institute of Nuclear Physics (INFN), National Laboratories of Frascati, 00044 Frascati, Italy; (M.L.P.); (S.B.)
| |
Collapse
|
4
|
Flauzino JMR, Nguyen EP, Yang Q, Rosati G, Panáček D, Brito-Madurro AG, Madurro JM, Bakandritsos A, Otyepka M, Merkoçi A. Label-free and reagentless electrochemical genosensor based on graphene acid for meat adulteration detection. Biosens Bioelectron 2022; 195:113628. [PMID: 34543917 DOI: 10.1016/j.bios.2021.113628] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022]
Abstract
With the increased demand for beef in emerging markets, the development of quality-control diagnostics that are fast, cheap and easy to handle is essential. Especially where beef must be free from pork residues, due to religious, cultural or allergic reasons, the availability of such diagnostic tools is crucial. In this work, we report a label-free impedimetric genosensor for the sensitive detection of pork residues in meat, by leveraging the biosensing capabilities of graphene acid - a densely and selectively functionalized graphene derivative. A single stranded DNA probe, specific for the pork mitochondrial genome, was immobilized onto carbon screen-printed electrodes modified with graphene acid. It was demonstrated that graphene acid improved the charge transport properties of the electrode, following a simple and rapid electrode modification and detection protocol. Using non-faradaic electrochemical impedance spectroscopy, which does not require any electrochemical indicators or redox pairs, the detection of pork residues in beef was achieved in less than 45 min (including sample preparation), with a limit of detection of 9% w/w pork content in beef samples. Importantly, the sample did not need to be purified or amplified, and the biosensor retained its performance properties unchanged for at least 4 weeks. This set of features places the present pork DNA sensor among the most attractive for further development and commercialization. Furthermore, it paves the way for the development of sensitive and selective point-of-need sensing devices for label-free, fast, simple and reliable monitoring of meat purity.
Collapse
Affiliation(s)
- José M R Flauzino
- Institute of Biotechnology, Federal University of Uberlândia, 38405-319, Uberlândia, MG, Brazil; Catalan Institute of Nanoscience and Nanotechnology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Emily P Nguyen
- Catalan Institute of Nanoscience and Nanotechnology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Qiuyue Yang
- Catalan Institute of Nanoscience and Nanotechnology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Giulio Rosati
- Catalan Institute of Nanoscience and Nanotechnology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - David Panáček
- Catalan Institute of Nanoscience and Nanotechnology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc, Czech Republic; Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Ana G Brito-Madurro
- Institute of Biotechnology, Federal University of Uberlândia, 38405-319, Uberlândia, MG, Brazil
| | - João M Madurro
- Institute of Biotechnology, Federal University of Uberlândia, 38405-319, Uberlândia, MG, Brazil; Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, MG, Brazil
| | - Aristides Bakandritsos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc, Czech Republic; Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc, Czech Republic; IT4Innovations, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
5
|
A plug, print & play inkjet printing and impedance-based biosensing technology operating through a smartphone for clinical diagnostics. Biosens Bioelectron 2021; 196:113737. [PMID: 34740116 DOI: 10.1016/j.bios.2021.113737] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 01/29/2023]
Abstract
Simplicity is one of the key feature for the spread of any successful technological product. Here, a method for rapid and low-cost fabrication of electrochemical biosensors is presented. This "plug, print & play" method involves inkjet-printing even in an office-like environment, without the need of highly specialized expertise or equipment, guaranteeing an ultra-fast idea to (scaled) prototype production time. The printed biosensors can be connected to a smartphone through its audio input for their impedance readout, demonstrating the validity of the system for point-of-care biosensing. Proper electrodes layout guarantees high sensitivity and is validated by finite element simulations. The introduction of a passivation method (wax printing) allowed to complete the devices fabrication process, increasing their sensitivity. Indeed, the wax allowed reducing the interference related to the parasitic currents flowing through the permeable coating of the employed substrates, which was used for the chemical sintering, thus avoiding the common thermal treatment after printing. As a case study, we used the devices to develop an electrochemical aptamer-based sensor for the rapid detection of neutrophil gelatinase-associated lipocalin (NGAL) in urine - a clinically important marker of acute kidney injury. The aptasensor platform is capable of detecting clinically relevant concentrations of NGAL with a simple and rapid smartphone readout. The developed technology may be extended in the future to continuous monitoring, taking advantage of its flexibility to integrate it in tubes, or to other diagnostic applications where cost/efficiency and rapidity of the research, development and implementation of point of care devices is a must.
Collapse
|
6
|
Rosati G, Cisotto G, Sili D, Compagnucci L, De Giorgi C, Pavone EF, Paccagnella A, Betti V. Inkjet-printed fully customizable and low-cost electrodes matrix for gesture recognition. Sci Rep 2021; 11:14938. [PMID: 34294822 PMCID: PMC8298403 DOI: 10.1038/s41598-021-94526-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/05/2021] [Indexed: 11/11/2022] Open
Abstract
The use of surface electromyography (sEMG) is rapidly spreading, from robotic prostheses and muscle computer interfaces to rehabilitation devices controlled by residual muscular activities. In this context, sEMG-based gesture recognition plays an enabling role in controlling prosthetics and devices in real-life settings. Our work aimed at developing a low-cost, print-and-play platform to acquire and analyse sEMG signals that can be arranged in a fully customized way, depending on the application and the users' needs. We produced 8-channel sEMG matrices to measure the muscular activity of the forearm using innovative nanoparticle-based inks to print the sensors embedded into each matrix using a commercial inkjet printer. Then, we acquired the multi-channel sEMG data from 12 participants while repeatedly performing twelve standard finger movements (six extensions and six flexions). Our results showed that inkjet printing-based sEMG signals ensured significant similarity values across repetitions in every participant, a large enough difference between movements (dissimilarity index above 0.2), and an overall classification accuracy of 93-95% for flexion and extension, respectively.
Collapse
Affiliation(s)
- Giulio Rosati
- Department of Information Engineering, University of Padova, via G. Gradenigo 6b, 35131, Padova, Italy.
| | - Giulia Cisotto
- Department of Information Engineering, University of Padova, via G. Gradenigo 6b, 35131, Padova, Italy
- NCNP, National Centre of Neurology and Psychiatry, Tokyo, Japan
- CNIT, the National, Inter-University Consortium for Telecommunications, Rome, Italy
| | - Daniele Sili
- Department of Psychology, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
- IRCCS Fondazione Santa Lucia, Via Ardeatina, 306/354, 00179, Rome, Italy
| | - Luca Compagnucci
- Department of Psychology, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
- IRCCS Fondazione Santa Lucia, Via Ardeatina, 306/354, 00179, Rome, Italy
| | - Chiara De Giorgi
- Department of Psychology, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
- IRCCS Fondazione Santa Lucia, Via Ardeatina, 306/354, 00179, Rome, Italy
| | | | - Alessandro Paccagnella
- Department of Information Engineering, University of Padova, via G. Gradenigo 6b, 35131, Padova, Italy
| | - Viviana Betti
- Department of Psychology, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
- IRCCS Fondazione Santa Lucia, Via Ardeatina, 306/354, 00179, Rome, Italy
| |
Collapse
|
7
|
Fuentes-Chust C, Parolo C, Rosati G, Rivas L, Perez-Toralla K, Simon S, de Lecuona I, Junot C, Trebicka J, Merkoçi A. The Microbiome Meets Nanotechnology: Opportunities and Challenges in Developing New Diagnostic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006104. [PMID: 33719117 DOI: 10.1002/adma.202006104] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/26/2020] [Indexed: 05/15/2023]
Abstract
Monitoring of the human microbiome is an emerging area of diagnostics for personalized medicine. Here, the potential of different nanomaterials and nanobiosensing technologies is reviewed for the development of novel diagnostic devices for the detection and measurement of microbiome-related biomarkers. Moreover, the current and future landscape of microbiome-based diagnostics is defined by exploring the advantages and disadvantages of current nanotechnology-based approaches, especially in the context of developing point-of-care (PoC) devices that would meet the international guidelines known as REASSURED (Real-time connectivity; Ease of specimen collection; Affordability; Sensitivity; Specificity; User-friendliness; Rapid & robust operation; Equipment-free; and Deliverability). Finally, the strategies of the latest international scientific consortia working in this field are analyzed, the current microbiome diagnostics market are reported and the principal ethical, legal, and societal issues related to microbiome R&D and innovation are discussed.
Collapse
Affiliation(s)
- Celia Fuentes-Chust
- Nanobioelectronics and Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona, 08193, Spain
| | - Claudio Parolo
- Nanobioelectronics and Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona, 08193, Spain
| | - Giulio Rosati
- Nanobioelectronics and Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona, 08193, Spain
| | - Lourdes Rivas
- Nanobioelectronics and Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona, 08193, Spain
| | - Karla Perez-Toralla
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), SPI, Gif-sur-Yvette cedex, 91191, France
| | - Stéphanie Simon
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), SPI, Gif-sur-Yvette cedex, 91191, France
| | - Itziar de Lecuona
- Bioethics and Law Observatory -UNESCO Chair in Bioethics-Department of Medicine, University of Barcelona, Barcelona, 08007, Spain
| | - Christophe Junot
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), SPI, Gif-sur-Yvette cedex, 91191, France
| | - Jonel Trebicka
- Department of Internal Medicine I, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- European Foundation for the Study of Chronic Liver Failure, Travesera de Gracia 11, Barcelona, 08021, Spain
| | - Arben Merkoçi
- Nanobioelectronics and Biosensors Group, Institut Català de Nanociència i Nanotecnologia (ICN2), UAB Campus, Bellaterra, Barcelona, 08193, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
8
|
Shumeiko V, Paltiel Y, Bisker G, Hayouka Z, Shoseyov O. A nanoscale paper-based near-infrared optical nose (NIRON). Biosens Bioelectron 2020; 172:112763. [PMID: 33166802 DOI: 10.1016/j.bios.2020.112763] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
Electronic noses (e-nose) and optical noses (o-nose) are two emerging approaches for the development of artificial olfactory systems for flavor and smell evaluation. The current work leverages the unique optical properties of semiconducting single-wall carbon nanotubes (SWCNTs) to develop a prototype of a novel paper-based near-infrared optical nose (NIRON). We have drop-dried an array of SWCNTs encapsulated with a wide variety of peptides on a paper substrate and continuously imaged the emitted SWCNTs fluorescence using a CMOS camera. Odors and different volatile molecules were passed above the array in a flow chamber, resulting in unique modulation patterns of the SWCNT photoluminescence (PL). Quartz crystal microbalance (QCM) measurements performed in parallel confirmed the direct binding between the vapor molecules and the peptide-SWCNTs. PL levels measured before and during exposure demonstrate distinct responses to the four tested alcoholic vapors (ethanol, methanol, propanol, and isopropanol). In addition, machine learning tools directly applied to the fluorescence images allow us to distinguish between the aromas of red wine, beer, and vodka. Further, we show that the developed sensor can detect limonene, undecanal, and geraniol vapors, and differentiate between their smells utilizing the PL response pattern. This novel paper-based optical biosensor provides data in real-time, and is recoverable and suitable for working at room temperature and in a wide range of humidity levels. This platform opens new avenues for real-time sensing of volatile chemical compounds, odors, and flavors.
Collapse
Affiliation(s)
- Vlad Shumeiko
- Department of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yossi Paltiel
- Center for Nanoscience and Nanotechnology, Applied Physics Department, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Oded Shoseyov
- Department of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
9
|
Chai C, Oh SW. Electrochemical impedimetric biosensors for food safety. Food Sci Biotechnol 2020; 29:879-887. [PMID: 32582450 PMCID: PMC7297935 DOI: 10.1007/s10068-020-00776-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 12/20/2022] Open
Abstract
Electrochemical impedimetric biosensors (EIBs) have a simple structure and can be used to rapidly and sensitively detect and measure hazards in food. EIBs detect and measure target molecules by transducing biochemical reactions on their surface to electrical signal outputs responding to a sinusoidal electrical signal input. Due to their structural simplicity and analytical sensitivity, EIBs are regarded as the most potent method of food hazard monitoring that can be implemented in the food supply chain. This paper discusses the theoretical background, structure, and construction of EIB and its applications in food safety.
Collapse
Affiliation(s)
- Changhoon Chai
- Department of Applied Animal Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Se-Wook Oh
- Department of Food and Nutrition, Kookmin University, Seoul, 02707 Republic of Korea
| |
Collapse
|
10
|
Miniaturized electrochemical platform with ink-jetted electrodes for multiplexed and interference mitigated biochemical sensing. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01480-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|