1
|
Ghatge MS, Al Mughram M, Omar AM, Safo MK. Inborn errors in the vitamin B6 salvage enzymes associated with neonatal epileptic encephalopathy and other pathologies. Biochimie 2021; 183:18-29. [PMID: 33421502 PMCID: PMC11273822 DOI: 10.1016/j.biochi.2020.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/28/2022]
Abstract
Pyridoxal 5'-phosphate (PLP), the active cofactor form of vitamin B6 is required by over 160 PLP-dependent (vitamin B6) enzymes serving diverse biological roles, such as carbohydrates, amino acids, hemes, and neurotransmitters metabolism. Three key enzymes, pyridoxal kinase (PL kinase), pyridoxine 5'-phosphate oxidase (PNPO), and phosphatases metabolize and supply PLP to PLP-dependent enzymes through the salvage pathway. In born errors in the salvage enzymes are known to cause inadequate levels of PLP in the cell, particularly in neuronal cells. The resulting PLP deficiency is known to cause or implicated in several pathologies, most notably seizures. One such disorder, PNPO-dependent neonatal epileptic encephalopathy (NEE) results from natural mutations in PNPO and leads to null or reduced enzymatic activity. NEE does not respond to conventional antiepileptic drugs but may respond to treatment with the B6 vitamers PLP and/or pyridoxine (PN). In born errors that lead to PLP deficiency in cells have also been reported in PL kinase, however, to date none has been associated with epilepsy or seizure. One such pathology is polyneuropathy that responds to PLP therapy. Phosphatase deficiency or hypophosphatasia disorder due to pathogenic mutations in alkaline phosphatase is known to cause seizures that respond to PN therapy. In this article, we review the biochemical features of in born errors pertaining to the salvage enzyme's deficiency that leads to NEE and other pathologies. We also present perspective on vitamin B6 treatment for these disorders, along with attempts to develop zebrafish model to study the NEE syndrome in vivo.
Collapse
Affiliation(s)
- Mohini S Ghatge
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA; Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Mohammed Al Mughram
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA; Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Abdelsattar M Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Alsulaymanyah, Jeddah, 21589, Saudi Arabia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Martin K Safo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA; Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
3
|
Montano C, Taub MA, Jaffe A, Briem E, Feinberg JI, Trygvadottir R, Idrizi A, Runarsson A, Berndsen B, Gur RC, Moore TM, Perry RT, Fugman D, Sabunciyan S, Yolken RH, Hyde TM, Kleinman JE, Sobell JL, Pato CN, Pato MT, Go RC, Nimgaonkar V, Weinberger DR, Braff D, Gur RE, Fallin MD, Feinberg AP. Association of DNA Methylation Differences With Schizophrenia in an Epigenome-Wide Association Study. JAMA Psychiatry 2016; 73:506-14. [PMID: 27074206 PMCID: PMC6353566 DOI: 10.1001/jamapsychiatry.2016.0144] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE DNA methylation may play an important role in schizophrenia (SZ), either directly as a mechanism of pathogenesis or as a biomarker of risk. OBJECTIVE To scan genome-wide DNA methylation data to identify differentially methylated CpGs between SZ cases and controls. DESIGN, SETTING, AND PARTICIPANTS Epigenome-wide association study begun in 2008 using DNA methylation levels of 456 513 CpG loci measured on the Infinium HumanMethylation450 array (Illumina) in a consortium of case-control studies for initial discovery and in an independent replication set. Primary analyses used general linear regression, adjusting for age, sex, race/ethnicity, smoking, batch, and cell type heterogeneity. The discovery set contained 689 SZ cases and 645 controls (n = 1334), from 3 multisite consortia: the Consortium on the Genetics of Endophenotypes in Schizophrenia, the Project among African-Americans To Explore Risks for Schizophrenia, and the Multiplex Multigenerational Family Study of Schizophrenia. The replication set contained 247 SZ cases and 250 controls (n = 497) from the Genomic Psychiatry Cohort. MAIN OUTCOMES AND MEASURES Identification of differentially methylated positions across the genome in SZ cases compared with controls. RESULTS Of the 689 case participants in the discovery set, 477 (69%) were men and 258 (37%) were non-African American; of the 645 controls, 273 (42%) were men and 419 (65%) were non-African American. In our replication set, cases/controls were 76% male and 100% non-African American. We identified SZ-associated methylation differences at 923 CpGs in the discovery set (false discovery rate, <0.2). Of these, 625 showed changes in the same direction including 172 with P < .05 in the replication set. Some replicated differentially methylated positions are located in a top-ranked SZ region from genome-wide association study analyses. CONCLUSIONS AND RELEVANCE This analysis identified 172 replicated new associations with SZ after careful correction for cell type heterogeneity and other potential confounders. The overlap with previous genome-wide association study data can provide potential insights into the functional relevance of genetic signals for SZ.
Collapse
Affiliation(s)
- Carolina Montano
- Medical Scientist Training Program and Predoctoral Training Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland,Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Margaret A. Taub
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Andrew Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Eirikur Briem
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jason I. Feinberg
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rakel Trygvadottir
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Adrian Idrizi
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Arni Runarsson
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Birna Berndsen
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ruben C. Gur
- Neuropsychiatry Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tyler M. Moore
- Neuropsychiatry Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rodney T. Perry
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham
| | - Doug Fugman
- Rutgers University Cell and DNA Repository, Piscataway, New Jersey
| | - Sarven Sabunciyan
- Stanley Division of Developmental Neurovirology, Johns Hopkins, School of Medicine, Baltimore, Maryland
| | - Robert H. Yolken
- Stanley Division of Developmental Neurovirology, Johns Hopkins, School of Medicine, Baltimore, Maryland
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Joel E. Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Janet L. Sobell
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine of University of Southern California, Los Angeles
| | - Carlos N. Pato
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine of University of Southern California, Los Angeles
| | - Michele T. Pato
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine of University of Southern California, Los Angeles
| | - Rodney C. Go
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham
| | | | - Daniel R. Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - David Braff
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla,VISN22, Mental Illness Research, Education, and Clinical Center, VA Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Raquel E. Gur
- Neuropsychiatry Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Margaret Daniele Fallin
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Andrew P. Feinberg
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland,Departments of Medicine and Biomedical Engineering, Johns Hopkins University School of Medicine and Whiting School of Engineering, Baltimore, Maryland
| |
Collapse
|
4
|
Dietrich-Muszalska A, Malinowska J, Olas B, Głowacki R, Bald E, Wachowicz B, Rabe-Jabłońska J. The oxidative stress may be induced by the elevated homocysteine in schizophrenic patients. Neurochem Res 2012; 37:1057-62. [PMID: 22270909 PMCID: PMC3321271 DOI: 10.1007/s11064-012-0707-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/03/2012] [Accepted: 01/10/2012] [Indexed: 12/14/2022]
Abstract
The mechanisms of oxidative stress in schizophrenic patients are not fully understood. In the present study, we investigated the effect of elevated level of homocysteine (Hcys) on some parameters of oxidative stress, namely thiobarbituric acid reactive substances (TBARS), an index of lipid peroxidation in plasma, the level of carbonyl groups in plasma proteins, as well as the amount of 3-nitrotyrosine in plasma proteins isolated from schizophrenic patients. Patients hospitalised in I and II Psychiatric Department of Medical University in Lodz, Poland were interviewed with special questionnaire (treatment, course of diseases, dyskinesis and other EPS). According to DSM-IV criteria all patients had diagnosis of paranoid type. They were treated with antipsychotic drugs (clozapine, risperidone, olanzapine). Mean time of schizophrenia duration was about 5 years. High-performance liquid chromatography was used to analyse the total level of homocysteine in plasma. Levels of carbonyl groups and 3-nitrotyrosine residues in plasma proteins were measured by ELISA and a competition ELISA, respectively. The lipid peroxidation in plasma was measured by the level of TBARS. Our results showed that in schizophrenic patients the amount of homocysteine in plasma was higher in comparison with the control group. We also observed a statistically increased level of biomarkers of oxidative/nitrative stress such as carbonyl groups or 3-nitrotyrosine in plasma proteins from schizophrenic patients. Moreover, our experiments indicate that the correlation between the increased amount of homocysteine and the oxidative stress exists. Considering the data presented in this study, we suggest that the elevated Hcys in schizophrenic patients may stimulate the oxidative stress.
Collapse
Affiliation(s)
- Anna Dietrich-Muszalska
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Czechoslowacka 8/10, 92-216 Lodz, Poland
| | - Joanna Malinowska
- Department of General Biochemistry, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland
| | - Beata Olas
- Department of General Biochemistry, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland
| | - Rafal Głowacki
- Department of Environmental Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz, Poland
| | - Edward Bald
- Department of Environmental Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz, Poland
| | - Barbara Wachowicz
- Department of General Biochemistry, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland
| | - Jolanta Rabe-Jabłońska
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Czechoslowacka 8/10, 92-216 Lodz, Poland
| |
Collapse
|
6
|
Musayev FN, Di Salvo ML, Saavedra MA, Contestabile R, Ghatge MS, Haynes A, Schirch V, Safo MK. Molecular basis of reduced pyridoxine 5'-phosphate oxidase catalytic activity in neonatal epileptic encephalopathy disorder. J Biol Chem 2009; 284:30949-56. [PMID: 19759001 DOI: 10.1074/jbc.m109.038372] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in pyridoxine 5'-phosphate oxidase are known to cause neonatal epileptic encephalopathy. This disorder has no cure or effective treatment and is often fatal. Pyridoxine 5'-phosphate oxidase catalyzes the oxidation of pyridoxine 5'-phosphate to pyridoxal 5'-phosphate, the active cofactor form of vitamin B(6) required by more than 140 different catalytic activities, including enzymes involved in amino acid metabolism and biosynthesis of neurotransmitters. Our aim is to elucidate the mechanism by which a homozygous missense mutation (R229W) in the oxidase, linked to neonatal epileptic encephalopathy, leads to reduced oxidase activity. The R229W variant is approximately 850-fold less efficient than the wild-type enzyme due to an approximately 192-fold decrease in pyridoxine 5'-phosphate affinity and an approximately 4.5-fold decrease in catalytic activity. There is also an approximately 50-fold reduction in the affinity of the R229W variant for the FMN cofactor. A 2.5 A crystal structure of the R229W variant shows that the substitution of Arg-229 at the FMN binding site has led to a loss of hydrogen-bond and/or salt-bridge interactions between FMN and Arg-229 and Ser-175. Additionally, the mutation has led to an alteration of the configuration of a beta-strand-loop-beta-strand structure at the active site, resulting in loss of two critical hydrogen-bond interactions involving residues His-227 and Arg-225, which are important for substrate binding and orientation for catalysis. These results provide a molecular basis for the phenotype associated with the R229W mutation, as well as providing a foundation for understanding the pathophysiological consequences of pyridoxine 5'-phosphate oxidase mutations.
Collapse
Affiliation(s)
- Faik N Musayev
- Department of Medicinal Chemistry, School of Pharmacy, and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23219, USA
| | | | | | | | | | | | | | | |
Collapse
|