1
|
Fan Y, Wang H, Wang C, Xing Y, Liu S, Feng L, Zhang X, Chen J. Advances in Smart-Response Hydrogels for Skin Wound Repair. Polymers (Basel) 2024; 16:2818. [PMID: 39408528 PMCID: PMC11479249 DOI: 10.3390/polym16192818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Hydrogels have emerged as promising candidates for biomedical applications, especially in the treatment of skin wounds, as a result of their unique structural properties, highly tunable physicochemical properties, and excellent biocompatibility. The integration of smart-response features into hydrogels allows for dynamic responses to different external or internal stimuli. Therefore, this paper reviews the design of different smart-responsive hydrogels for different microenvironments in the field of skin wound therapy. First, the unique microenvironments of three typical chronic difficult-to-heal wounds and the key mechanisms affecting wound healing therapeutic measures are outlined. Strategies for the construction of internal stimulus-responsive hydrogels (e.g., pH, ROS, enzymes, and glucose) and external stimulus-responsive hydrogels (e.g., temperature, light, electricity, and magnetic fields) are highlighted from the perspective of the wound microenvironment and the in vitro environment, and the constitutive relationships between material design, intelligent response, and wound healing are revealed. Finally, this paper discusses the severe challenges faced by smart-responsive hydrogels during skin wound repair and provides an outlook on the combination of smart-responsive hydrogels and artificial intelligence to give scientific direction for creating and using hydrogel dressings that respond to stimuli in the clinic.
Collapse
Affiliation(s)
- Yinuo Fan
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Han Wang
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Chunxiao Wang
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Yuanhao Xing
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Shuying Liu
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Linhan Feng
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Xinyu Zhang
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
- State Key Laboratory of Mineral Processing, Beijing 100160, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 265599, China
| |
Collapse
|
2
|
Valentin BC, Philippe ON, Henry MM, Salvius BA, Suzanne MK, Kasali FM, Baptiste LSJ. Ethnomedical Knowledge of Plants Used in Nonconventional Medicine for Wound Healing in Lubumbashi, Haut-Katanga Province, DR Congo. ScientificWorldJournal 2024; 2024:4049263. [PMID: 39376217 PMCID: PMC11458279 DOI: 10.1155/2024/4049263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/16/2024] [Indexed: 10/09/2024] Open
Abstract
Medicinal plants used for wound healing in Lubumbashi have yet to be discovered. Inventory or profile of their taxa has yet to be established. The present study was carried out to survey the plants used in traditional medicine in Lubumbashi to treat wounds and to define their ethnomedical characteristics. The study was conducted between March 2021 and August 2022, using semistructured interview surveys of households (n = 2730), herbalists (n = 48), and traditional practitioners: TPs (n = 128).The 2,906 interviewed (sex ratio M/F = 0.9; mean age: 56 ± 3 years; and experience: 17 ± 4 years) provided information on 166 taxa, 130 used against chronic wounds, among which Securidaca longepedunculata was the top cited. Most of these taxa are shrubs (33%), belonging to 48 botanical families dominated by the Fabaceae (16%). They are indicated in 70 other pathologies. From these 166 taxa, 198 healing recipes are obtained, 11 combining more than one plant. In all these recipes, the leaf (>36%) is the most used part, and the poultice (>36%) is the most popular form of use. Twelve taxa are cited for the first time as medicinal plants, of which Agelanthus zizyphifolius has the highest consensus and Erigeron sumatrensis has the highest usual value. For the various plants used to treat wounds, some of which are specific to the region, further studies should focus on validating this traditional use.
Collapse
Affiliation(s)
- Bashige Chiribagula Valentin
- Department of Pharmacology, Laboratory of Therapeutic Chemistry and Analysis of Natural Substances, Faculty of Pharmaceutical Sciences (UNILU), 27, Av. Kato, Commune Kampemba, Lubumbashi, Democratic Republic of the Congo
| | - Okusa Ndjolo Philippe
- Department of Pharmacology, Laboratory of Therapeutic Chemistry and Analysis of Natural Substances, Faculty of Pharmaceutical Sciences (UNILU), 27, Av. Kato, Commune Kampemba, Lubumbashi, Democratic Republic of the Congo
| | - Manya Mboni Henry
- Department of Pharmacology, Laboratory of Therapeutic Chemistry and Analysis of Natural Substances, Faculty of Pharmaceutical Sciences (UNILU), 27, Av. Kato, Commune Kampemba, Lubumbashi, Democratic Republic of the Congo
| | - Bakari Amuri Salvius
- Department of Pharmacology, Laboratory of Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Lubumbashi (UNILU), 27, Av. Kato, Commune Kampemba, Lubumbashi, Democratic Republic of the Congo
| | - Masengu Kabeya Suzanne
- Department of Pharmacology, Laboratory of Therapeutic Chemistry and Analysis of Natural Substances, Faculty of Pharmaceutical Sciences (UNILU), 27, Av. Kato, Commune Kampemba, Lubumbashi, Democratic Republic of the Congo
| | - Félicien Mushagalusa Kasali
- Department of Pharmacy, College of Health Sciences, Université Officielle de Bukavu (UOB), PO. Box: 570, Bukavu, Commune of Kadutu, Av. Karhale, Democratic Republic of the Congo
| | - Lumbu Simbi Jean Baptiste
- Department of Chemistry, Faculty of Sciences, University of Lubumbashi (UNILU), 1 Maternity Av., Commune of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| |
Collapse
|
3
|
Maiyo ZC, Njeru SN, Toroitich FJ, Indieka SA, Obonyo MA. Ethnobotanical study of medicinal plants used by the people of Mosop, Nandi County in Kenya. Front Pharmacol 2024; 14:1328903. [PMID: 38313073 PMCID: PMC10834697 DOI: 10.3389/fphar.2023.1328903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
Background: Throughout the history, nature has provided mankind with most of their basic needs, which include food, shelter, medicine, clothes, flavours, scents as well as raw materials. Given that they are an integral part of cultural heritage, medicinal plants have played a significant role in human healthcare systems around the world. Investigating various biological resources for use as medicines requires ethnomedicinal studies. Methods: Data on utilization of ethnomedicinal plants from local healers in Kenya's Mosop Sub-County in Nandi County was documented through open-ended, semi-structured questionnaires. A number of quantitative indices, such as the Use Citation (UC), Informant Consensus Factor (ICF), Use Value (UV), Frequency of Citation (FoC) and Relative Frequency of Citation (RFC) were used to convey the potential medical benefits, vitality and variety of the ethnomedicine. Results: 102 informants provided information on 253 ethnomedicinal plant species, classified into 74 families. There were 249 native plant species identified, along with few exotic species: Senegalia senegal (L.) Britton, Persea americana Mill, Carica papaya L. and Solanum betaceum Cav. Of all recorded species, 32% and 27% were herbs and trees, respectively. Among plant parts, leaves were most frequently utilized (27%) and roots (26%), while decoctions (21%) were the most widely used formulations. The dominant family was Asteraceae, with 28 species, followed by Lamiaceae, with 19 species. The highest ICF value was 0.778 for a number of parasitic and infectious illnesses, including ringworms, athlete's foot rot, tetanus, typhoid, intestinal parasites, abscesses, malaria, and amoebiasis. The study's data validates the region's widespread use of traditional medicinal plant remedies. Conclusion: The current study will lay a foundation of knowledge for future research investigations. The abundance of knowledge regarding ethnomedicinal species and their medicinal applications will stimulate further phytochemical and pharmacological research, which could lead to the discovery of potentially significant pharmaceuticals.
Collapse
Affiliation(s)
- Z C Maiyo
- Faculty of Science, Department of Biochemistry and Molecular Biology, Njoro, Kenya
| | - S N Njeru
- Centre for Traditional Medicine and Drug Research (CTMDR), Kenya Medical Research Institute, Nairobi, Kenya
| | - F J Toroitich
- Faculty of Science, Department of Biological Sciences, Egerton University, Njoro, Kenya
| | - S A Indieka
- Faculty of Science, Department of Biochemistry and Molecular Biology, Njoro, Kenya
| | - M A Obonyo
- Faculty of Science, Department of Biochemistry and Molecular Biology, Njoro, Kenya
| |
Collapse
|
4
|
Nephroprotective effects of Piper nigrum extracts against monosodium glutamate-induced renal toxicity in rats. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
5
|
Muangsri R, Chuysinuan P, Thanyacharoen T, Techasakul S, Sukhavattanakul P, Ummartyotin S. Release Characteristic and Antioxidant Activity of 4‐Hydroxybenzoic Acid (4HB) from Sodium Alginate and Polyvinyl Alcohol‐based Hydrogel. ChemistrySelect 2022. [DOI: 10.1002/slct.202202329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Rapeepan Muangsri
- Department of Materials and Textile Technology, Faculty of Science and Technology Thammasat University Pathumtani Thailand
| | - Piyachat Chuysinuan
- Laboratory of Organic Synthesis Chulabhorn Research Institute Bangkok Thailand
| | | | - Supanna Techasakul
- Laboratory of Organic Synthesis Chulabhorn Research Institute Bangkok Thailand
| | - Pongpat Sukhavattanakul
- Department of Materials and Textile Technology, Faculty of Science and Technology Thammasat University Pathumtani Thailand
| | - Sarute Ummartyotin
- Department of Materials and Textile Technology, Faculty of Science and Technology Thammasat University Pathumtani Thailand
| |
Collapse
|
6
|
Rani Raju N, Silina E, Stupin V, Manturova N, Chidambaram SB, Achar RR. Multifunctional and Smart Wound Dressings—A Review on Recent Research Advancements in Skin Regenerative Medicine. Pharmaceutics 2022; 14:pharmaceutics14081574. [PMID: 36015200 PMCID: PMC9414988 DOI: 10.3390/pharmaceutics14081574] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
The healing of wounds is a dynamic function that necessitates coordination among multiple cell types and an optimal extracellular milieu. Much of the research focused on finding new techniques to improve and manage dermal injuries, chronic injuries, burn injuries, and sepsis, which are frequent medical concerns. A new research strategy involves developing multifunctional dressings to aid innate healing and combat numerous issues that trouble incompletely healed injuries, such as extreme inflammation, ischemic damage, scarring, and wound infection. Natural origin-based compounds offer distinct characteristics, such as excellent biocompatibility, cost-effectiveness, and low toxicity. Researchers have developed biopolymer-based wound dressings with drugs, biomacromolecules, and cells that are cytocompatible, hemostatic, initiate skin rejuvenation and rapid healing, and possess anti-inflammatory and antimicrobial activity. The main goal would be to mimic characteristics of fetal tissue regeneration in the adult healing phase, including complete hair and glandular restoration without delay or scarring. Emerging treatments based on biomaterials, nanoparticles, and biomimetic proteases have the keys to improving wound care and will be a vital addition to the therapeutic toolkit for slow-healing wounds. This study focuses on recent discoveries of several dressings that have undergone extensive pre-clinical development or are now undergoing fundamental research.
Collapse
Affiliation(s)
- Nithya Rani Raju
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
| | - Ekaterina Silina
- Institute of Biodesign and Modeling of Complex Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Street 8, 119991 Moscow, Russia;
| | - Victor Stupin
- Department of Hospital Surgery No 1, N.I. Pirogov Russian National Research Medical University (RNRMU), Ostrovityanova Street 1, 117997 Moscow, Russia;
| | - Natalia Manturova
- Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technologies, N.I. Pirogov Russian National Research Medical University, Ostrovityanova Street 1, 117997 Moscow, Russia;
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
- Centre for Experimental Pharmacology and Toxicology (CPT), Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
- Correspondence: ; Tel.: +91-9535413026
| |
Collapse
|
7
|
Sitohang NA, Putra EDL, Kamil H, Musman M. Acceleration of wound healing by topical application of gel formulation of Barringtonia racemosa (L.) Spreng kernel extract. F1000Res 2022; 11:191. [PMID: 35356313 PMCID: PMC8933646 DOI: 10.12688/f1000research.104602.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2022] [Indexed: 08/26/2024] Open
Abstract
Background: Phytomedicines are gaining a spotlight in wound management, where much research has suggested the wound healing potential of Barringtonia racemosa. The objective of this study was to investigate the effectiveness of B. racemosa kernel extract in accelerating wound healing process in animal models. Methods:B. racemosa kernel was extracted using ethanol:water (7:3) solvent and was then used as a bioactive ingredient in a Carbopol 940-based gel formulation in four different concentrations (1, 3, 5 and 7 ppm). A 3 cm diameter wound was made in the dorsal area of Rattus norvegicus rat and wound healing process was assessed up to 12 days using DESIGN (Depth, Exudate, Size of Inflammation/Infection, Granulation tissue, and Necrotic tissue) scoring system. Results: Our data suggested that the DESIGN scores were significantly different among concentration groups after the 3 rd day onward suggesting B. racemosa extract accelerated the wound healing process. Rats treated with gel formulation containing 7 ppm of B. racemosa kernel extract had faster wound healing than that treated with topical Metcovazin. Conclusion:B. racemosa kernel extract was effective in accelerating wound healing on rats. Further study is warranted to purify the bioactive component and the action mechanism in wound healing process.
Collapse
Affiliation(s)
- Nur A. Sitohang
- Graduate School of Mathematics and Applied Science, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Faculty of Nursing, Universitas Sumatera Utara, Medan, 20222, Indonesia
| | | | - Hajjul Kamil
- Faculty of Nursing, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Musri Musman
- Faculty of Education and Teachers’ Training, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| |
Collapse
|
8
|
Sitohang NA, Putra EDL, Kamil H, Musman M. Acceleration of wound healing by topical application of gel formulation of Barringtonia racemosa (L.) Spreng kernel extract. F1000Res 2022; 11:191. [PMID: 35356313 PMCID: PMC8933646 DOI: 10.12688/f1000research.104602.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Phytomedicines are gaining a spotlight in wound management, where much research has suggested the wound healing potential of Barringtonia racemosa. The objective of this study was to investigate the effectiveness of B. racemosa kernel extract in accelerating wound healing process in animal models. Methods:B. racemosa kernel was extracted using ethanol:water (7:3) solvent and was then used as a bioactive ingredient in a Carbopol 940-based gel formulation in four different concentrations (1, 3, 5 and 7 ppm). A 3 cm diameter wound was made in the dorsal area of Rattus norvegicus rat and wound healing process was assessed up to 12 days using DESIGN (Depth, Exudate, Size of Inflammation/Infection, Granulation tissue, and Necrotic tissue) scoring system. Results: Our data suggested that the DESIGN scores were significantly different among concentration groups after the 3 rdday onward suggesting B. racemosa extract accelerated the wound healing process. Rats treated with gel formulation containing 7 ppm of B. racemosa kernel extract had faster wound healing than that treated with topical Metcovazin. On day 6, macroscopic observation on 7 ppm group revealed that the wound had persistent redness, lesion area of < 3 cm 2, and 80% healthy granulation, where presence of exudate and redness were not observable. Conclusion:B. racemosa kernel extract was effective in accelerating wound healing on rats. Further study is warranted to purify the bioactive component and the action mechanism in wound healing process.
Collapse
Affiliation(s)
- Nur A. Sitohang
- Graduate School of Mathematics and Applied Science, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Faculty of Nursing, Universitas Sumatera Utara, Medan, 20222, Indonesia
| | | | - Hajjul Kamil
- Faculty of Nursing, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Musri Musman
- Faculty of Education and Teachers’ Training, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| |
Collapse
|