1
|
Harahap MG, Abfertiawan MS, Syafila M, Handajani M, Gultom TH. Electrocoagulation for nickel, chromium, and iron removal from mine water using aluminum electrodes. Heliyon 2024; 10:e40784. [PMID: 39687179 PMCID: PMC11648226 DOI: 10.1016/j.heliyon.2024.e40784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/09/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
High global demand for nickel metal has contributed significantly to the growth of the nickel mining industry in Indonesia. This growth has a positive multiplier effect on the economy, with the potential to affect aquatic life and humans owing to the high levels of chromium, nickel, and iron in mine water. Therefore, this study aims to develop an electrocoagulation (EC) reactor to remove nickel, chromium, and iron from mine water. This study used a continuous reactor and aluminum electrodes with variations in current density (3.378, 6.757, and 10.135 mA/cm2) and inflow (0.3, 0.5, and 1 L/min). The results showed that the operating scenario with a current strength of 6 A and an inflow of 0.3 L/min had a removal efficiency of 86.89 % nickel, 99.51 % chromium, and 80.61 % iron with a charge loading value of 11,194 F/ma3 and Reynolds number of 39. These results are expected to provide valuable information for the development of an effective EC technology, thereby demonstrating its potential for the removal of metals from nickel mine water.
Collapse
Affiliation(s)
- Muhammad Ghozali Harahap
- Water and Wastewater Engineering Research Group, Faculty of Civil and Environmental Engineering, Bandung Institute of Technology, Indonesia
| | - Muhammad Sonny Abfertiawan
- Water and Wastewater Engineering Research Group, Faculty of Civil and Environmental Engineering, Bandung Institute of Technology, Indonesia
| | - Mindriany Syafila
- Water and Wastewater Engineering Research Group, Faculty of Civil and Environmental Engineering, Bandung Institute of Technology, Indonesia
| | - Marisa Handajani
- Water and Wastewater Engineering Research Group, Faculty of Civil and Environmental Engineering, Bandung Institute of Technology, Indonesia
| | - Tonny H. Gultom
- Program Studi Doktor, Sekolah Ilmu Lingkungan, Universitas Indonesia, Indonesia
| |
Collapse
|
2
|
Şen A, Akarsu C, Bilici Z, Arslan H, Dizge N. Treatment of tomato paste wastewater by electrochemical and membrane processes: process optimization and cost calculation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:1879-1890. [PMID: 38619909 DOI: 10.2166/wst.2024.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/29/2024] [Indexed: 04/17/2024]
Abstract
This study investigated the treatment of wastewater from tomato paste (TP) production using electrocoagulation (EC) and electrooxidation (EO). The effectiveness of water recovery from the pretreated water was then investigated using the membrane process. For this purpose, the effects of independent control variables, including electrode type (aluminum, iron, graphite, and stainless steel), current density (25-75 A/m2), and electrolysis time (15-120 min) on chemical oxygen demand (COD) and color removal were investigated. The results showed that 81.0% of COD and 100% of the color removal were achieved by EC at a current density of 75 A/m2, a pH of 6.84 and a reaction time of 120 min aluminum electrodes. In comparison, EO with graphite electrodes achieved 55.6% of COD and 100% of the color removal under similar conditions. The operating cost was calculated to be in the range of $0.56-30.62/m3. Overall, the results indicate that EO with graphite electrodes is a promising pretreatment process for the removal of various organics. In the membrane process, NP030, NP010, and NF90 membranes were used at a volume of 250 mL and 5 bar. A significant COD removal rate of 94% was achieved with the membrane. The combination of EC and the membrane process demonstrated the feasibility of water recovery from TP wastewater.
Collapse
Affiliation(s)
- Aliye Şen
- Department of Environmental Engineering, Engineering Faculty, Mersin University, Mersin, Turkey
| | - Ceyhun Akarsu
- Department of Environmental Engineering, Engineering Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Zeynep Bilici
- Department of Environmental Engineering, Engineering Faculty, Mersin University, Mersin, Turkey
| | - Hudaverdi Arslan
- Department of Environmental Engineering, Engineering Faculty, Mersin University, Mersin, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Engineering Faculty, Mersin University, Mersin, Turkey E-mail:
| |
Collapse
|
3
|
Obi CC, Nwabanne JT, Igwegbe CA, Abonyi MN, Umembamalu CJ, Kamuche TT. Intelligent algorithms-aided modeling and optimization of the deturbidization of abattoir wastewater by electrocoagulation using aluminium electrodes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120161. [PMID: 38290261 DOI: 10.1016/j.jenvman.2024.120161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/05/2024] [Accepted: 01/20/2024] [Indexed: 02/01/2024]
Abstract
The removal of turbidity from abattoir wastewater (AWW) by electrocoagulation (EC) was modeled and optimized using Artificial Intelligence (AI) algorithms. Artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), particle swarm optimization (PSO), and genetic algorithms (GA) were the AI tools employed. Five input variables were considered: pH, current intensity, electrolysis time, settling time, and temperature. The ANN model was evaluated using the Levenberg-Marquardt (trainlm) algorithm, while the ANFIS modeling was accomplished using the Sugeno-type FIS. The ANN and ANFIS models demonstrated linear adequacy with the experimental data, with an R2 value of 0.9993 in both cases. The corresponding statistical error indices were RMSE (ANN = 5.65685E-05; ANFIS = 2.82843E-05), SSE (ANN = 1.60E-07; ANFIS = 3.4E-08), and MSE (ANN = 3.2E-09; ANFIS = 8E-10). The error indices revealed that the ANFIS model had the least performance error and is considered the most reliable of the two. The process optimization performed with GA and PSO considered turbidity removal efficiency, energy requirement, and electrode material loss. An optimal turbidity removal efficiency of 99.39 % was predicted at pH (3.1), current intensity (2 A), electrolysis time (20 min), settling time (50 min), and operating temperature (50 °C). This represents a potential for the delivery of cleaner water without the use of chemicals. The estimated power consumption and the theoretical mass of the aluminium electrode dissolved at the optimum condition were 293.33 kW h/m3 and 0.2237 g, respectively. The work successfully affirmed the effectiveness of the EC process in the removal of finely divided suspended particles from AWW and demonstrated the suitability of the AI algorithms in the modeling and optimization of the process.
Collapse
Affiliation(s)
| | - Joseph Tagbo Nwabanne
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka, 420218, Nigeria.
| | - Chinenye Adaobi Igwegbe
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka, 420218, Nigeria; Department of Applied Bioeconomy, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland.
| | - Matthew Ndubuisi Abonyi
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka, 420218, Nigeria.
| | | | - Toochukwu ThankGod Kamuche
- Department of Chemical Engineering, Chukwuemeka Odumegwu Ojukwu University, Uli, Anambra State, Nigeria.
| |
Collapse
|
4
|
Li X, Zhai W, Duan X, Gou C, Li M, Wang L, Basang W, Zhu Y, Gao Y. Extraction, Purification, Characterization and Application in Livestock Wastewater of S Sulfur Convertase. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16368. [PMID: 36498440 PMCID: PMC9740322 DOI: 10.3390/ijerph192316368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Sulfide is a toxic pollutant in the farming environment. Microbial removal of sulfide always faces various biochemical challenges, and the application of enzymes for agricultural environmental remediation has promising prospects. In this study, a strain of Cellulosimicrobium sp. was isolated: numbered strain L1. Strain L1 can transform S2-, extracellular enzymes play a major role in this process. Next, the extracellular enzyme was purified, and the molecular weight of the purified sulfur convertase was about 70 kDa. The sulfur convertase is an oxidase with thermal and storage stability, and the inhibitor and organic solvent have little effect on its activity. In livestock wastewater, the sulfur convertase can completely remove S2-. In summary, this study developed a sulfur convertase and provides a basis for the application in environmental remediation.
Collapse
Affiliation(s)
- Xintian Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130000, China
| | - Wei Zhai
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130000, China
| | - Xinran Duan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130000, China
| | - Changlong Gou
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Min Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130000, China
| | - Lixia Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa 850009, China
| | - Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa 850009, China
| | - Yunhang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130000, China
| |
Collapse
|