1
|
Queffélec C, Pati PB, Pellegrin Y. Fifty Shades of Phenanthroline: Synthesis Strategies to Functionalize 1,10-Phenanthroline in All Positions. Chem Rev 2024; 124:6700-6902. [PMID: 38747613 DOI: 10.1021/acs.chemrev.3c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
1,10-Phenanthroline (phen) is one of the most popular ligands ever used in coordination chemistry due to its strong affinity for a wide range of metals with various oxidation states. Its polyaromatic structure provides robustness and rigidity, leading to intriguing features in numerous fields (luminescent coordination scaffolds, catalysis, supramolecular chemistry, sensors, theranostics, etc.). Importantly, phen offers eight distinct positions for functional groups to be attached, showcasing remarkable versatility for such a simple ligand. As a result, phen has become a landmark molecule for coordination chemists, serving as a must-use ligand and a versatile platform for designing polyfunctional arrays. The extensive use of substituted phenanthroline ligands with different metal ions has resulted in a diverse array of complexes tailored for numerous applications. For instance, these complexes have been utilized as sensitizers in dye-sensitized solar cells, as luminescent probes modified with antibodies for biomaterials, and in the creation of elegant supramolecular architectures like rotaxanes and catenanes, exemplified by Sauvage's Nobel Prize-winning work in 2016. In summary, phen has found applications in almost every facet of chemistry. An intriguing aspect of phen is the specific reactivity of each pair of carbon atoms ([2,9], [3,8], [4,7], and [5,6]), enabling the functionalization of each pair with different groups and leading to polyfunctional arrays. Furthermore, it is possible to differentiate each position in these pairs, resulting in non-symmetrical systems with tremendous versatility. In this Review, the authors aim to compile and categorize existing synthetic strategies for the stepwise polyfunctionalization of phen in various positions. This comprehensive toolbox will aid coordination chemists in designing virtually any polyfunctional ligand. The survey will encompass seminal work from the 1950s to the present day. The scope of the Review will be limited to 1,10-phenanthroline, excluding ligands with more intracyclic heteroatoms or fused aromatic cycles. Overall, the primary goal of this Review is to highlight both old and recent synthetic strategies that find applicability in the mentioned applications. By doing so, the authors hope to establish a first reference for phenanthroline synthesis, covering all possible positions on the backbone, and hope to inspire all concerned chemists to devise new strategies that have not yet been explored.
Collapse
Affiliation(s)
| | | | - Yann Pellegrin
- Nantes Université, CEISAM UMR 6230, F-44000 Nantes, France
| |
Collapse
|
2
|
Zhou H, Li T, Xie M, Zhou Y, Sun Q, Zhang ST, Zhang Y, Yang W, Xue S. Improving electron transportation and operational lifetime of full color organic light emitting diodes through a "weak hydrogen bonding cage" structure. Chem Sci 2024; 15:8106-8111. [PMID: 38817588 PMCID: PMC11134344 DOI: 10.1039/d4sc00496e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/19/2024] [Indexed: 06/01/2024] Open
Abstract
Efficient electron-transporting materials (ETMs) are critical to achieving excellent performance of organic light-emitting diodes (OLEDs), yet developing such materials remains a major long-term challenge, particularly ETMs with high electron mobilities (μeles). Herein, we report a short conjugated ETM molecule (PICN) with a dipolar phenanthroimidazole group, which exhibits an electron mobility of up to 1.52 × 10-4 cm2 (V-1 s-1). The origin of this high μele is long-ranged, regulated special cage-like interactions with C-H⋯N radii, which are also favorable for the excellent efficiency stability and operational stability in OLEDs. It is worth noting that the green phosphorescent OLED operation half-lifetimes can reach up to 630 h under unencapsulation, which is 20 times longer than that based on the commonly used commercial ETM TPBi.
Collapse
Affiliation(s)
- Huayi Zhou
- School of Polymer Science & Engineering, Key Laboratory of Rubber-Plastics of the Ministry of Education, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Tengyue Li
- School of Polymer Science & Engineering, Key Laboratory of Rubber-Plastics of the Ministry of Education, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Mingliang Xie
- School of Polymer Science & Engineering, Key Laboratory of Rubber-Plastics of the Ministry of Education, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Yannan Zhou
- School of Polymer Science & Engineering, Key Laboratory of Rubber-Plastics of the Ministry of Education, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Qikun Sun
- School of Polymer Science & Engineering, Key Laboratory of Rubber-Plastics of the Ministry of Education, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Shi-Tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yujian Zhang
- Department of Chemistry Zhejiang Normal University, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Yingbin Road No. 688 Jinhua 321004 P. R. China
| | - Wenjun Yang
- School of Polymer Science & Engineering, Key Laboratory of Rubber-Plastics of the Ministry of Education, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Shanfeng Xue
- School of Polymer Science & Engineering, Key Laboratory of Rubber-Plastics of the Ministry of Education, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| |
Collapse
|
3
|
Luo A, Bao Y, Liu X, Liu J, Han W, Yang G, Yang Y, Bin Z, You J. Unlocking Structurally Nontraditional Naphthyridine-Based Electron-Transporting Materials with C-H Activation-Annulation. J Am Chem Soc 2024; 146:6240-6251. [PMID: 38315826 DOI: 10.1021/jacs.3c14297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The inherent benefits of C-H activation have given rise to innovative approaches in designing organic optoelectronic molecules that depart from conventional methods. While theoretical calculations have suggested the suitability of the 2,6-naphthyridine scaffold for electron transport materials (ETMs) in organic light-emitting diodes (OLEDs), the existing synthetic methodologies have proven to be insufficient for the construction of multiple arylated and fully aryl-substituted molecules. Herein, we present a solution for the synthesis of 2,6-naphthyridine derivatives, with the rhodium-catalyzed consecutive C-H activation-annulation process of fumaric acid with alkynes standing as the pivotal step within this strategy. The ETMs, purposefully designed and synthesized based on the 2,6-naphthyridine framework, exhibit an impressively high glass-transition temperature (Tg) of 282 °C and high electron mobility (μe), setting a new benchmark for ETMs in OLEDs with a μe exceeding 10-2 cm2 V-1 s-1. These materials prove to be versatile ETM candidates suitable for red, green, and blue phosphorescent OLED devices.
Collapse
Affiliation(s)
- Anping Luo
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Yuanyuan Bao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Xiaoyu Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Junjie Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Weiguo Han
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Ge Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Zhengyang Bin
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| |
Collapse
|
4
|
Zhang Z, Huang Y, Bai Q, Wu T, Jiang Z, Su H, Zong Y, Wang M, Su PY, Xie TZ, Wang P. Aggregation-Induced Emission Metallocuboctahedra for White Light Devices. JACS AU 2022; 2:2809-2820. [PMID: 36590262 PMCID: PMC9795569 DOI: 10.1021/jacsau.2c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Materials for organic light-emitting devices which exhibit superior emission properties in both the solution and solid states with a high fluorescence quantum yield have been extensively sought after. Herein, two metallocages, S1 and S2, were constructed, and both showed typical aggregation-induced emission (AIE) features with intense yellow fluorescence. By adding blue-emissive 9,10-dimethylanthracene, pure white light emission can be produced in the solution of S1 and S2. Furthermore, due to the remarkable AIE feature and good fluorescence quantum yield in the solid state, metallocages are highly emissive in the solid state and can be utilized to coat blue LED bulbs or integrate with blue-emitting chips to obtain white light. This study advances the usage of metallocages as practical solid-state fluorescent materials and provides a fresh perspective on highly emissive AIE materials.
Collapse
Affiliation(s)
- Zhe Zhang
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
| | - Yan Huang
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
| | - Qixia Bai
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
| | - Tun Wu
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhiyuan Jiang
- Hunan
Key Laboratory of Micro & Nano Materials Interface Science; College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, China
| | - Haoyue Su
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Yingxin Zong
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
| | - Ming Wang
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Pei-Yang Su
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
| | - Ting-Zheng Xie
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
| | - Pingshan Wang
- Institute
of Environmental Research at Greater Bay Area, Key Laboratory for
Water Quality and Conservation of the Pearl River Delta, Ministry
of Education, Guangzhou University, Guangzhou 510006, China
- Hunan
Key Laboratory of Micro & Nano Materials Interface Science; College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, China
| |
Collapse
|
5
|
Shi Y, Bin Z, Liu J, Han W, Yang G, Lei B, You J. Structurally Nontraditional Benzo[c]cinnoline-Based Electron-Transporting Materials with 3D Molecular Interaction Architecture. Angew Chem Int Ed Engl 2022; 61:e202202898. [PMID: 35349199 DOI: 10.1002/anie.202202898] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 12/13/2022]
Abstract
The academically widely used electron-transporting materials (ETMs) typically suffer from low glass transition temperatures (Tg ) that could lead to poor device stability. Considering practical applications, we herein put forward a "3D molecular interaction architecture" strategy to design high-performance ETMs. As a proof-of-concept, a type of structurally nontraditional ETMs with the benzo[c]cinnoline (BZC) skeleton have been proposed and synthesized by the C-H/C-H homo-coupling of N-acylaniline as the key step. 2,9-diphenylbenzo[c]cinnoline (DPBZC) exhibits strong intermolecular interactions that feature a 3D architecture, which boosts Tg to exceedingly high 218 °C with a fast electron mobility (μe ) of 6.4×10-4 cm2 V-1 s-1 . DPBZC-based fluorescent organic light-emitting diodes show outstanding electroluminescent performances with an external quantum efficiency of 20.1 % and a power efficiency as high as 70.6 lm W-1 , which are superior to those of the devices with the commonly used ETMs.
Collapse
Affiliation(s)
- Yang Shi
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Zhengyang Bin
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jiahui Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Weiguo Han
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Ge Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Bowen Lei
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
6
|
Structurally Nontraditional Benzo[
c
]cinnoline‐Based Electron‐Transporting Materials with 3D Molecular Interaction Architecture. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Chen LL, Tan WY, Zhu XH. Phosphine oxide derivatives as a robust component for optoelectronics. Sci Bull (Beijing) 2020; 65:2033-2035. [PMID: 36732948 DOI: 10.1016/j.scib.2020.08.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Ling-Ling Chen
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Wan-Yi Tan
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Xu-Hui Zhu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
8
|
Chen LL, Peng L, Wang LY, Zhu XH, Zou JH, Peng J. Molecular engineering of an electron-transport triarylphosphine oxide-triazine conjugate toward high-performance phosphorescent organic light-emitting diodes with remarkable stability. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9714-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Hydrogen bond modulation in 1,10-phenanthroline derivatives for versatile electron transport materials with high thermal stability, large electron mobility and excellent n-doping ability. Sci Bull (Beijing) 2020; 65:153-160. [PMID: 36659079 DOI: 10.1016/j.scib.2019.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 01/21/2023]
Abstract
4,7-Bisphenyl-1,10-phenanthroline (BPhen) is a promising electron transport material (ETM) and has been widely used in organic light-emitting diodes (OLEDs) because of the large electron mobility and easy fabrication process. However, its low glass transition temperature would lead to poor device stability. In the past decades, various attempts have been carried out to improve its thermal stability though always be accomplished by the reduced electron mobility. Here, we present a molecular engineering to modulate the properties of BPhen, and through which, a versatile BPhen derivative (4,7-bis(naphthalene-β-yl)-1,10-phenanthroline, β-BNPhen) with high thermal stability (glass transition temperature = 111.9 °C), large electron mobility (7.8 × 10-4 cm2/(V s) under an electrical field of 4.5 × 105 V/cm) and excellent n-doping ability with an air-stable metal of Ag is developed and used as multifunctional layers to improve the efficiency and enhance the stability of OLEDs. This work elucidates the great importance of our molecular engineering methodology and device structure optimization strategy, unlocking the potential of 1,10-phenanthroline derivatives towards practical applications.
Collapse
|
10
|
Dou D, Wu P, Liao Z, Hao J, Zhang J, Wang Z. A thermally activated delayed fluorescence exciplex to achieve highly efficient and stable blue and green phosphorescent organic light-emitting diodes. RSC Adv 2019; 9:23810-23817. [PMID: 35530600 PMCID: PMC9069484 DOI: 10.1039/c9ra02875g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/22/2019] [Indexed: 12/26/2022] Open
Abstract
The development of a thermally activated delayed fluorescence (TADF) exciplex with high energy is of great significance in achieving highly efficient blue, green, and red organic light-emitting diodes (OLEDs) for use in full-color displays and white lighting. Highly efficient and stable blue and green phosphorescent OLEDs were demonstrated by employing a TADF exciplex (energy: 2.9 eV) based on 4-substituted aza-9,9'-spirobifluorenes (aza-SBFs). Blue PhOLEDs demonstrated a maximum current efficiency (CE) of 47.9 cd A-1 and an external quantum efficiency (EQE) of 22.5% at 1300 cd m-2 (2.5 times the values of aza-SBF-based systems), with the best blue PhOLED demonstrating a CE, power efficiency (PE) and EQE of 60.3 cd A-1, 52.7 lm W-1, and 26.2%, respectively. Green PhOLEDs exhibited a CE of 78.1 cd A-1 and EQE of 22.5% at 9360 cd m-2, with the best green PhOLED exhibiting a maximum CE, PE, and EQE of 87.4 cd A-1, 101.6 lm W-1, and 24.5%, respectively. The device operational lifetime was improved over 17-fold compared to reference devices because of the high thermal stability of the materials and full utilization of the TADF exciplex energy, indicating their potential for application in commercial OLEDs.
Collapse
Affiliation(s)
- Dehai Dou
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University 149 Yanchang Rd 200072 P. R. China +86-21-56333362 +86-21-56333362
- Department of Chemistry, Shanghai University 149 Yanchang Rd 200072 P. R. China
| | - Peng Wu
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University 149 Yanchang Rd 200072 P. R. China +86-21-56333362 +86-21-56333362
- Department of Chemistry, Shanghai University 149 Yanchang Rd 200072 P. R. China
| | - Zhangcheng Liao
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University 149 Yanchang Rd 200072 P. R. China +86-21-56333362 +86-21-56333362
- Department of Chemistry, Shanghai University 149 Yanchang Rd 200072 P. R. China
| | - Jian Hao
- Department of Chemistry, Shanghai University 149 Yanchang Rd 200072 P. R. China
| | - Jianhua Zhang
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University 149 Yanchang Rd 200072 P. R. China +86-21-56333362 +86-21-56333362
| | - Zixing Wang
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University 149 Yanchang Rd 200072 P. R. China +86-21-56333362 +86-21-56333362
| |
Collapse
|
11
|
Efficient soluble deep blue electroluminescent dianthracenylphenylene emitters with CIE y (y ≤ 0.08) based on triplet-triplet annihilation. Sci Bull (Beijing) 2019; 64:774-781. [PMID: 36659547 DOI: 10.1016/j.scib.2019.04.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/31/2019] [Accepted: 04/18/2019] [Indexed: 01/21/2023]
Abstract
It has been challenging to develop deep blue organic molecular fluorescent emitters with CIE y (y ≤ 0.08) based on triplet-triplet annihilation (TTA). Here, we report facilely available dianthracenylphenylene-based emitters, which have a 3,5-di(4-t-butylphenyl)phenyl moiety at the one end and 4-cyanophenyl or 3-pyridyl at the other end, respectively. Both fluorophores show a high glass transition temperature of over 220 °C with a thermal decomposition temperature of over 430 °C at an initial weight loss of 1%. The preliminary characterizations of the organic light-emitting diodes (OLEDs) that utilized these nondoped emitters provided high EQEs of 4.6%-5.9% with CIE coordinates (0.15, 0.07-0.08). The analysis of the EL transient decay revealed that TTA contributed to the observed performance. The results show that the new emitters are attractive as a potential TTA-based host to afford stable deep blue fluorescent OLEDs.
Collapse
|
12
|
Liang B, Wang J, Cheng Z, Wei J, Wang Y. Exciplex-Based Electroluminescence: Over 21% External Quantum Efficiency and Approaching 100 lm/W Power Efficiency. J Phys Chem Lett 2019; 10:2811-2816. [PMID: 31082247 DOI: 10.1021/acs.jpclett.9b01140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Benzimidazole-triazine-based electron acceptor PIM-TRZ with high triplet exited-state energy and strong electron-transport ability was newly developed. A series of highly efficient exciplex emitters have been fabricated. The TAPC:PIM-TRZ (TAPC: di-[4-( N, N-ditoly amino)-phenyl]cyclohexane) film shows a high photoluminescence (PL) quantum yields (PLQY, Φf) of 93.4%, and the device based on TAPC:PIM-TRZ exhibits a low turn-on voltage of 2.3 V, high maximum efficiency of 71.2 cd A-1 (current efficiency, CE), 97.3 lm W-1 (power efficiency, PE), and 21.7% (external quantum efficiency, EQE), as well as a high EQE of 16.2% at a luminance of 5000 cd m-2. The device displays the highest efficiency among reported organic light-emitting devices with an exciplex film as the emitting layer. Furthermore, a green device is also fabricated with a TAPC:PIM-TRZ cohost using C545T (C545T: (10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1 H,5 H,11 H-benzopyrano[6,7-8- I, j]quinolizin-11-one)) as the dopant, and the highest CE, PE, and EQE are 68.3 cd A-1, 86.6 lm W-1, and 20.2%, respectively.
Collapse
Affiliation(s)
- Baoyan Liang
- State Key Laboratory of Supramolecular Structure and Materials , Jilin University , Changchun 130012 , People's Republic of China
| | - Jiaxuan Wang
- State Key Laboratory of Supramolecular Structure and Materials , Jilin University , Changchun 130012 , People's Republic of China
| | - Zong Cheng
- State Key Laboratory of Supramolecular Structure and Materials , Jilin University , Changchun 130012 , People's Republic of China
| | - Jinbei Wei
- State Key Laboratory of Supramolecular Structure and Materials , Jilin University , Changchun 130012 , People's Republic of China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials , Jilin University , Changchun 130012 , People's Republic of China
| |
Collapse
|