1
|
Dai B, Gao C, Guo J, Ding M, Xu Q, He S, Mou Y, Dong H, Hu M, Dai Z, Zhang Y, Xie Y, Lin Z. A Robust Pyro-phototronic Route to Markedly Enhanced Photocatalytic Disinfection. NANO LETTERS 2024. [PMID: 38606881 DOI: 10.1021/acs.nanolett.3c05098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Photocatalysis offers a direct, yet robust, approach to eradicate pathogenic bacteria. However, the practical implementation of photocatalytic disinfection faces a significant challenge due to low-efficiency photogenerated carrier separation and transfer. Here, we present an effective approach to improve photocatalytic disinfection performance by exploiting the pyro-phototronic effect through a synergistic combination of pyroelectric properties and photocatalytic processes. A set of comprehensive studies reveals that the temperature fluctuation-induced pyroelectric field promotes photoexcited carrier separation and transfer and thus facilitates the generation of reactive oxygen species and ultimately enhances photocatalytic disinfection performance. It is worth highlighting that the constructed film demonstrated an exceptional antibacterial efficiency exceeding 95% against pathogenic bacteria under temperature fluctuations and light irradiation. Moreover, the versatile modulation role of the pyro-phototronic effect in boosting photocatalytic disinfection was corroborated. This work paves the way for improving photocatalytic disinfection efficiency by harnessing the synergistic potential of various inherent material properties.
Collapse
Affiliation(s)
- Baoying Dai
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Chenchen Gao
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jiahao Guo
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Meng Ding
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Qinglin Xu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Shaoxiong He
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 118425, Singapore
| | - Yongbin Mou
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Heng Dong
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Mingao Hu
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zhuo Dai
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Yu Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing 210008, China
| | - Yannan Xie
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 118425, Singapore
| |
Collapse
|
2
|
Gupta S, Kumar R. Enhanced photocatalytic performance of the N-rGO/g-C 3N 4 nanocomposite for efficient solar-driven water remediation. NANOSCALE 2024; 16:6109-6131. [PMID: 38444302 DOI: 10.1039/d3nr06203a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
This paper describes the synthesis and analysis of a photocatalyst made from a combination of reduced graphene oxide (rGO) and graphitic carbon nitride (g-C3N4) through a simple hydrothermal process. The effectiveness of the N-rGO/g-C3N4 heterostructure in photocatalysis was examined by studying the breakdown of different types of organic pollutants, such as cationic and anionic dyes, as well as antibiotics, under simulated solar light irradiation. Due to the presence of Schottky junctions formed between rGO and g-C3N4, the electron transfer process is significantly enhanced, leading to a reduction in the recombination of photogenerated electrons and holes. As a result, the photocatalytic activity of the rGO/g-C3N4 photocatalyst is significantly higher compared to that of g-C3N4 alone. The photocatalytic performance was further augmented through the nitrogen doping of rGO, which led to an increase in conductivity due to electron doping and an enhancement in the charge separation process. The heterojunction of rGO/g-C3N4 with an optimum concentration of 60% rGO attained a degradation efficiency of 98.7% for rhodamine B (RhB) dye after 50 minutes of light irradiation. In comparison, the nitrogen-doped photocatalyst (N-rGO/g-C3N4) achieved a photodegradation efficiency of 99.99% within 30 minutes. The reaction rate constant of the N-rGO/g-C3N4 nanocomposite was found to be 0.11 min-1 using pseudo first-order rate kinetics. This value is about 16 times more than that of pure g-C3N4 (0.007 min-1) for the degradation of rhodamine B. Additionally, N-rGO/g-C3N4 effectively degraded various contaminants, such as methylene blue, methyl orange, and tetracycline hydrochloride. The paper also addresses the photocatalytic mechanism, which entails the facilitated movement of electrons and holes produced by light, owing to the alignment of energy bands at the interface of the N-rGO/g-C3N4 heterojunction. These findings contribute to the advancement of a metal-free and porous photocatalyst that is highly interconnected and can be used for waste water treatment and environmental remediation.
Collapse
Affiliation(s)
- Shalu Gupta
- Department of Physics and Astrophysics, Central University of Haryana, Mahendergarh-123031, India.
| | - Rakesh Kumar
- Department of Physics and Astrophysics, Central University of Haryana, Mahendergarh-123031, India.
| |
Collapse
|
3
|
Koli VB, Murugan G, Ke SC. Self-Assembled Synthesis of Porous Iron-Doped Graphitic Carbon Nitride Nanostructures for Efficient Photocatalytic Hydrogen Evolution and Nitrogen Fixation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:275. [PMID: 36678029 PMCID: PMC9862282 DOI: 10.3390/nano13020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
In this study, Fe-doped graphitic carbon nitride (Fe-MCNC) with varying Fe contents was synthesized via a supramolecular approach, followed by thermal exfoliation, and was then used for accelerated photocatalytic hydrogen evolution and nitrogen fixation. Various techniques were used to study the physicochemical properties of the MCN (g-C3N4 from melamine) and Fe-MCNC (MCN for g-C3N4 and C for cyanuric acid) catalysts. The field emission scanning electron microscopy (FE-SEM) images clearly demonstrate that the morphology of Fe-MCNC changes from planar sheets to porous, partially twisted (partially developed nanotube and nanorod) nanostructures. The elemental mapping study confirms the uniform distribution of Fe on the MCNC surface. The X-ray photoelectron spectroscopy (XPS) and UV-visible diffuse reflectance spectroscopy (UV-DRS) results suggest that the Fe species might exist in the Fe3+ state and form Fe-N bonds with N atoms, thereby extending the visible light absorption areas and decreasing the band gap of MCN. Furthermore, doping with precise amounts of Fe might induce exfoliation and increase the specific surface area, but excessive Fe could destroy the MCN structure. The optimized Fe-MCNC nanostructure had a specific surface area of 23.6 m2 g-1, which was 8.1 times greater than that of MCN (2.89 m2 g-1). To study its photocatalytic properties, the nanostructure was tested for photocatalytic hydrogen evolution and nitrogen fixation; 2Fe-MCNC shows the highest photocatalytic activity, which is approximately 13.3 times and 2.4 times better, respectively, than MCN-1H. Due to its high efficiency and stability, the Fe-MCNC nanostructure is a promising and ideal photocatalyst for a wide range of applications.
Collapse
|
4
|
Li M, Pan Q, Xiao M, Xiong J. Highly dispersed NiS 2 quantum dots as a promising cocatalyst bridged by acetylene black significantly improved the photocatalytic H 2 evolution performance of g-C 3N 4 nanosheets. RSC Adv 2022; 12:2603-2611. [PMID: 35425292 PMCID: PMC8979214 DOI: 10.1039/d1ra07110f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/18/2021] [Indexed: 11/21/2022] Open
Abstract
In this work, ternary nanocomposite (CNs-AB/NiS2) as a novel efficient H2 evolution photocatalyst without the use of noble metals was successfully synthesized by depositing acetylene black (AB) and ultra-fine NiS2 nanoparticles on the surface of CNs (g-C3N4) through ultrasonic dispersion and chemical vapor deposition methods, respectively. It was revealed that the loaded AB and NiS2 nanoparticles have significantly improved the photocatalytic H2 evolution efficiency of the CNs by improving the photogenerated electron-hole pair separation, visible light absorption and hydrogen evolution kinetics. Besides acting as a cocatalyst, AB served as a conductive electron bridge between CNs and NiS2, which accelerated the effective transfer of electrons from CNs to NiS2 and improved the H2 evolution kinetics of the NiS2 cocatalyst. The H2 evolution experiments revealed that the ternary photocatalyst CNs-AB/NiS210 displayed a H2 evolution rate of up to 2434.85 μmoL g-1 h-1, which was a 1.41 times enhancement compared to that of the binary composite CNs-NiS210 and was 12.43 times higher than that of the pure CNs. Moreover, the ternary photocatalyst CNs-AB/NiS210 not only exhibited excellent photocatalytic activity and stability in the tests, but provided a novel idea for the development of high-efficiency catalysts free of noble metals as well.
Collapse
Affiliation(s)
- Miaomiao Li
- School of Physics and Telecommunication Engineering, South China Normal University Guangzhou 510631 Guangdong China +86 020 85216860
| | - Qilin Pan
- School of Physics and Telecommunication Engineering, South China Normal University Guangzhou 510631 Guangdong China +86 020 85216860
| | - Mucang Xiao
- School of Physics and Telecommunication Engineering, South China Normal University Guangzhou 510631 Guangdong China +86 020 85216860
| | - Jianwen Xiong
- School of Physics and Telecommunication Engineering, South China Normal University Guangzhou 510631 Guangdong China +86 020 85216860
| |
Collapse
|
5
|
Alaghmandfard A, Ghandi K. A Comprehensive Review of Graphitic Carbon Nitride (g-C 3N 4)-Metal Oxide-Based Nanocomposites: Potential for Photocatalysis and Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:294. [PMID: 35055311 PMCID: PMC8779993 DOI: 10.3390/nano12020294] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
g-C3N4 has drawn lots of attention due to its photocatalytic activity, low-cost and facile synthesis, and interesting layered structure. However, to improve some of the properties of g-C3N4, such as photochemical stability, electrical band structure, and to decrease charge recombination rate, and towards effective light-harvesting, g-C3N4-metal oxide-based heterojunctions have been introduced. In this review, we initially discussed the preparation, modification, and physical properties of the g-C3N4 and then, we discussed the combination of g-C3N4 with various metal oxides such as TiO2, ZnO, FeO, Fe2O3, Fe3O4, WO3, SnO, SnO2, etc. We summarized some of their characteristic properties of these heterojunctions, their optical features, photocatalytic performance, and electrical band edge positions. This review covers recent advances, including applications in water splitting, CO2 reduction, and photodegradation of organic pollutants, sensors, bacterial disinfection, and supercapacitors. We show that metal oxides can improve the efficiency of the bare g-C3N4 to make the composites suitable for a wide range of applications. Finally, this review provides some perspectives, limitations, and challenges in investigation of g-C3N4-metal-oxide-based heterojunctions.
Collapse
Affiliation(s)
| | - Khashayar Ghandi
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
6
|
Tao Z, Hu X, He L, Zhang H. Direct complexation of citric acid to synthesize high-efficiency bismuth vanadate through molten polymerization route for the degradation of tetracycline hydrochloride under visible light irradiation. NEW J CHEM 2022. [DOI: 10.1039/d2nj00069e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tetracycline hydrochloride can be efficiently degraded over BiVO4 prepared through direct citric acid complexation.
Collapse
Affiliation(s)
- Zihao Tao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Xiaojun Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Lan He
- Yonker environmental protection Co., Ltd., Hunan 410329, P. R. China
| | - Hongbo Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Zhang Z, Xu Y, Zhang Q, Fang S, Sun H, Ou W, Su C. Semi-heterogeneous photo-Cu-dual-catalytic cross-coupling reactions using polymeric carbon nitrides. Sci Bull (Beijing) 2022; 67:71-78. [DOI: 10.1016/j.scib.2021.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 02/02/2023]
|
8
|
Dong J, Zhang Y, Hussain MI, Zhou W, Chen Y, Wang LN. g-C 3N 4: Properties, Pore Modifications, and Photocatalytic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:121. [PMID: 35010072 PMCID: PMC8746910 DOI: 10.3390/nano12010121] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022]
Abstract
Graphitic carbon nitride (g-C3N4), as a polymeric semiconductor, is promising for ecological and economical photocatalytic applications because of its suitable electronic structures, together with the low cost, facile preparation, and metal-free feature. By modifying porous g-C3N4, its photoelectric behaviors could be facilitated with transport channels for photogenerated carriers, reactive substances, and abundant active sites for redox reactions, thus further improving photocatalytic performance. There are three types of methods to modify the pore structure of g-C3N4: hard-template method, soft-template method, and template-free method. Among them, the hard-template method may produce uniform and tunable pores, but requires toxic and environmentally hazardous chemicals to remove the template. In comparison, the soft templates could be removed at high temperatures during the preparation process without any additional steps. However, the soft-template method cannot strictly control the size and morphology of the pores, so prepared samples are not as orderly as the hard-template method. The template-free method does not involve any template, and the pore structure can be formed by designing precursors and exfoliation from bulk g-C3N4 (BCN). Without template support, there was no significant improvement in specific surface area (SSA). In this review, we first demonstrate the impact of pore structure on photoelectric performance. We then discuss pore modification methods, emphasizing comparison of their advantages and disadvantages. Each method's changing trend and development direction is also summarized in combination with the commonly used functional modification methods. Furthermore, we introduce the application prospects of porous g-C3N4 in the subsequent studies. Overall, porous g-C3N4 as an excellent photocatalyst has a huge development space in photocatalysis in the future.
Collapse
Affiliation(s)
- Jiaqi Dong
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (J.D.); (M.I.H.)
| | - Yue Zhang
- Shunde Graduate School, University of Science and Technology Beijing, Foshan 528399, China; (Y.Z.); (W.Z.)
| | - Muhammad Irfan Hussain
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (J.D.); (M.I.H.)
| | - Wenjie Zhou
- Shunde Graduate School, University of Science and Technology Beijing, Foshan 528399, China; (Y.Z.); (W.Z.)
| | - Yingzhi Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (J.D.); (M.I.H.)
- Shunde Graduate School, University of Science and Technology Beijing, Foshan 528399, China; (Y.Z.); (W.Z.)
| | - Lu-Ning Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (J.D.); (M.I.H.)
- Shunde Graduate School, University of Science and Technology Beijing, Foshan 528399, China; (Y.Z.); (W.Z.)
| |
Collapse
|
9
|
Corrosion properties of organic polymer coating reinforced two-dimensional nitride nanostructures: a comprehensive review. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02434-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Enhanced visible-light-driven photoelectrochemical and photocatalytic performance of Au-SnO2 quantum dot-anchored g-C3N4 nanosheets. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116652] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Wang P, Ji Y, Shao Q, Li Y, Huang X. Core@shell structured Au@SnO 2 nanoparticles with improved N 2 adsorption/activation and electrical conductivity for efficient N 2 fixation. Sci Bull (Beijing) 2020; 65:350-358. [PMID: 36659225 DOI: 10.1016/j.scib.2019.12.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 01/21/2023]
Abstract
The design of electrocatalysts with enhanced adsorption and activation of nitrogen (N2) is critical for boosting the electrochemical N2 reduction (ENR). Herein, we developed an efficient strategy to facilitate N2 adsorption and activation for N2 electroreduction into ammonia (NH3) by vacancy engineering of core@shell structured Au@SnO2 nanoparticles (NPs). We found that the ultrathin amorphous SnO2 shell with enriched oxygen vacancies was conducive to adsorb N2 as well as promoted the N2 activation, meanwhile the metallic Au core ensured the good electrical conductivity for accelerating electrons transport during the electrochemical N2 reduction reaction, synergistically boosting the N2 electroreduction catalysis. As confirmed by the 15N-labeling and controlled experiments, the core@shell Au@amorphous SnO2 NPs with abundant oxygen vacancies show the best performance for N2 electroreduction with the NH3 yield rate of 21.9 μg h-1 mg-1cat and faradaic efficiency of 15.2% at -0.2 VRHE, which surpass the Au@crystalline SnO2 NPs, individual Au NPs and all reported Au-based catalysts for ENR.
Collapse
Affiliation(s)
- Pengtang Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Xiaoqing Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
12
|
Huang Q, Zhao Q, Yang C, Jiang T. Facile synthesis of mesoporous graphitic carbon nitride/SnO2 nanocomposite photocatalysts for the enhanced photodegradation of Rhodamine B. REACTION KINETICS MECHANISMS AND CATALYSIS 2019. [DOI: 10.1007/s11144-019-01712-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
An Y, Liu Y, Bian H, Wang Z, Wang P, Zheng Z, Dai Y, Whangbo MH, Huang B. Improving the photocatalytic hydrogen evolution of UiO-67 by incorporating Ce 4+-coordinated bipyridinedicarboxylate ligands. Sci Bull (Beijing) 2019; 64:1502-1509. [PMID: 36659558 DOI: 10.1016/j.scib.2019.07.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/01/2019] [Accepted: 07/23/2019] [Indexed: 01/21/2023]
Abstract
UiO-67 is a Zr-based metal-organic framework (MOF) containing an organic linker namely, the dianion of biphenyl-4,4'-dicarboxylic acid (bpdc). Ce4+ metal ions (0.02 Ce to Zr atom ratio) were incorporated into UiO-67 via partially replacing bpdc with the dianion of 2,2'-bipyridine-5,5'-dicarboxylic acid (bpydc); thus, the latter forms a bpydc-Ce complex. The resulting product (i.e., UiO-67-Ce) demonstrated a photocatalytic hydrogen evolution rate that was over 10 times higher than that of UiO-67. Through this modification, a new energy transfer channel is opened up. The energy transfer between the bpdc and bpydc-Ce ligands (i.e., from excited bpdc to bpydc-Ce) weakened the recombination of the charge carriers, which was confirmed by photoluminescence, emission lifetime, and transient absorption measurements. This study presents a new way to construct highly efficient MOF photocatalysts.
Collapse
Affiliation(s)
- Yang An
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China; Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225002, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Shaanxi Normal University, Xi'an 710119, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan 250100, China
| | - Myung-Hwan Whangbo
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China; Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences, Fuzhou 350002, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| |
Collapse
|
14
|
Yang H, Yin J, Cao R, Sun P, Zhang S, Xu X. Constructing highly dispersed 0D Co 3S 4 quantum dots/2D g-C 3N 4 nanosheets nanocomposites for excellent photocatalytic performance. Sci Bull (Beijing) 2019; 64:1510-1517. [PMID: 36659559 DOI: 10.1016/j.scib.2019.08.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/04/2019] [Accepted: 07/23/2019] [Indexed: 01/21/2023]
Abstract
The development of noble-metal-free catalysts with high efficiency photocatalytic properties is critical to the heterogeneous catalysis. Herein, zero-dimensional (0D) metal sulfide quantum dots/two-dimensional (2D) g-C3N4 nanosheets (Co3S4/CNNS) nanocomposites are synthesized by a two-step method, including the ways of in-situ deposition and water bath. The highly dispersed Co3S4 quantum dots (particle size is 2-4 nm) are evenly and tightly fixed on CNNS, which can be used as co-catalyst to effectively replace noble metals to improve the photocatalytic properties of CNNS. Co3S4/CNNS-900 has the apparent quantum efficiency, which is up to 7.85% at 400 nm. At the same time, the H2 evolution rate of Co3S4/CNNS-900 is 20,536.4 μmol g-1 h-1, which is 555 times than CNNS. The excellent photocatalytic performance is due to the highly dispersed Co3S4 quantum dots on 2D CNNS, which facilitate the formation of more active sites, Co3S4/CNNS promotes the separation and migration of photogenerated carriers, shortens the migration distance of photogenerated carriers, and eventually leads to an increase of the photocatalytic performance.
Collapse
Affiliation(s)
- Hongcen Yang
- School of Physics and Technology, University of Jinan, Jinan 250022, China
| | - Jiangmei Yin
- School of Physics and Technology, University of Jinan, Jinan 250022, China
| | - Ruya Cao
- School of Physics and Technology, University of Jinan, Jinan 250022, China
| | - Pengxiao Sun
- School of Physics and Technology, University of Jinan, Jinan 250022, China
| | - Shouwei Zhang
- School of Physics and Technology, University of Jinan, Jinan 250022, China
| | - Xijin Xu
- School of Physics and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|