1
|
Wu J, Jiang Y, He R, Liu Z, Zhang X, Wang W, Kong W, Wang G, Wu Y. Adsorption/desorption of enrofloxacin in farmland soil as the effect of pH and coexisting ions: implications for enrofloxacin fate and risk in loess soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:363. [PMID: 39126534 DOI: 10.1007/s10653-024-02143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Fluoroquinolone antibiotics have been extensively used in clinical treatments for human and animal diseases. However, their long-term presence in the environment increases the risk of producing resistance genes and creates a potential threat to ecosystems and the health of humans and animals. Batch equilibrium experiments were utilized to investigate the adsorption and retention behavior and mechanism of the quinolone antibiotic enrofloxacin (ENR) in farmland soil in North China. The adsorption and desorption kinetics of ENR in soil were best fitted by pseudo-second-order model (R2 > 0.999). Both the adsorption and desorption processes of ENR in soil reached equilibrium in 1 h. The desorption amounts of ENR were significantly lower than the adsorption amounts, with the hysteresis coefficient (HI) being less than 0.7. The adsorption thermodynamic process of ENR followed the Linear and Freundlich models (0.965 < R2 < 0.985). Hydrophobic distribution and heterogeneous multimolecular layer adsorption were identified as critical factors in the adsorption process. The adsorption amount of ENR gradually decreased with increasing temperature and the initial concentration of ENR. The adsorption rate of ENR was above 80%, while the desorption rate remained below 15%, indicating strong retention ability. The adsorption rate of ENR in soil decreased with increasing pH, the adsorption rate reached 98.3% at pH 3.0 but only 31.5% at pH 11. The influence of coexisting ions on adsorption primarily depended on their properties, such as ion radius, ionic strength, and hydrolysis properties, and the inhibition of adsorption increased with increasing ionic strength. These findings contribute to understanding the fate and risk of veterinary antibiotics in loess soil in North China.
Collapse
Affiliation(s)
- Jiali Wu
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yufeng Jiang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Rui He
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Zhewei Liu
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Xiaozhen Zhang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Wenjing Wang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Weichen Kong
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Gang Wang
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yingqin Wu
- Key Laboratory of Petroleum Resources Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
2
|
Qiu Y, Zhang K, Zhao Y, Zhao Y, Wang B, Wang Y, He T, Xu X, Bai T, Zhang Y, Hu S. Climate warming suppresses abundant soil fungal taxa and reduces soil carbon efflux in a semi-arid grassland. MLIFE 2023; 2:389-400. [PMID: 38818267 PMCID: PMC10989086 DOI: 10.1002/mlf2.12098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 06/01/2024]
Abstract
Soil microorganisms critically affect the ecosystem carbon (C) balance and C-climate feedback by directly controlling organic C decomposition and indirectly regulating nutrient availability for plant C fixation. However, the effects of climate change drivers such as warming, precipitation change on soil microbial communities, and C dynamics remain poorly understood. Using a long-term field warming and precipitation manipulation in a semi-arid grassland on the Loess Plateau and a complementary incubation experiment, here we show that warming and rainfall reduction differentially affect the abundance and composition of bacteria and fungi, and soil C efflux. Warming significantly reduced the abundance of fungi but not bacteria, increasing the relative dominance of bacteria in the soil microbial community. In particular, warming shifted the community composition of abundant fungi in favor of oligotrophic Capnodiales and Hypocreales over potential saprotroph Archaeorhizomycetales. Also, precipitation reduction increased soil total microbial biomass but did not significantly affect the abundance or diversity of bacteria. Furthermore, the community composition of abundant, but not rare, soil fungi was significantly correlated with soil CO2 efflux. Our findings suggest that alterations in the fungal community composition, in response to changes in soil C and moisture, dominate the microbial responses to climate change and thus control soil C dynamics in semi-arid grasslands.
Collapse
Affiliation(s)
- Yunpeng Qiu
- College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
| | - Kangcheng Zhang
- College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
| | - Yunfeng Zhao
- College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
| | - Yexin Zhao
- College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
| | - Bianbian Wang
- Ningxia Yunwu Mountains Grassland Natural Reserve AdministrationGuyuanChina
| | - Yi Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth EnvironmentChinese Academy of SciencesXi'anChina
| | - Tangqing He
- College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
| | - Xinyu Xu
- College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
- Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
| | - Tongshuo Bai
- College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
| | - Yi Zhang
- College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
| | - Shuijin Hu
- Department of Entomology & Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
3
|
Wang Y, Huang L, Jia X, Zhu Y, Shao MA. Distribution characteristics and controls of soil organic carbon at different spatial scales in China's Loess Plateau. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112943. [PMID: 34102503 DOI: 10.1016/j.jenvman.2021.112943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Understanding the variations and controls of soil organic carbon (SOC) at different spatial scales can help in selecting edaphic and environmental covariates that enables us to model SOC more accurately. The present study investigated the distribution characteristics and controls of SOC content at various spatial scales, including a deep soil core (204.5 m) taken from land surface down to bedrock (plot scale), two toposequences with different slope aspects (slope scale), and eighty-six soil profiles along a north-south transect under different land uses (regional scale) in China's Loess Plateau. The results showed that SOC content at different spatial scales decreased exponentially with increasing soil depth, but the rate of reduction differed at various spatial scales and in soil layers at different depths. For the deep soil core, the SOC content and the average rate of reduction with depth in the 0-15.5 m soil layer were significantly higher than the corresponding values of the 15.5-34.5 m and 34.5-204.5 m soil layers (p < 0.05). For the toposequences with varying slope aspects, SOC content in the 0-50 cm soil layer declined rapidly with increasing depth; while SOC content in the 50-200 cm soil layer showed relatively no change. There was no significant difference of average SOC content at depths of 0-200 cm for forestland and grassland considering slope aspects that differed or were the same (p > 0.05) due to the similar climatic conditions. However, SOC content within 0-500 cm soil profile under different land uses along the north-south transect exhibited a significant difference (p < 0.05), following the order of farmland (4.94 ± 1.23 g kg-1) > forestland (3.01 ± 1.45 g kg-1) > grassland (2.03 ± 0.68 g kg-1); moreover, the mean SOC content of the 0-500 cm soil profile generally decreased from south to north following the decreasing rainfall and temperature gradient. The average rates of reduction of SOC content in the 0-50 cm soil layer under different land uses (0.0807-0.1756 g kg-1 cm-1) were higher than the values of the 50-200 cm (0.0021-0.0154 g kg-1 cm-1) and 200-500 cm soil layers (0.0001-0.0017 g kg-1 cm-). The SOC content at the plot scale at different depths positively correlated with total nitrogen content. The SOC content at the slope scale was mainly affected by soil water content and saturated hydraulic conductivity, while that at the regional scale was impacted by climate, topography and soil water/clay content. Pedotransfer functions were applied to adequately simulate and predict SOC content at different spatial scales in the studied area, which could provide a foundation to build SOC prediction models and extrapolate the various spatial scales to other loess regions worldwide. Our findings demonstrate the importance of considering the scale effects for efficiently predicting the spatial patterns of SOC and can help in devising better policy to protect or enhance existing SOC stocks.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Laiming Huang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A & F University, Yangling, 712100, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaoxu Jia
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A & F University, Yangling, 712100, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanjun Zhu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A & F University, Yangling, 712100, China
| | - Ming An Shao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A & F University, Yangling, 712100, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Distributions of Particle Sizes in Black Soil and Their Environmental Significance in Northeast China. SUSTAINABILITY 2021. [DOI: 10.3390/su13073706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, black soil has decreased and degenerated heavily due to complicated functions of natural and artificial factors. Hence, characterizing distributions of particle sizes in black soil and their environmental influencing factors is important for understanding black soil degradation. A total of 116 surface soil samples in the top 20 cm from a typical black soil region in northeastern China were collected, and the spatial distribution of particle size parameters were characterized. Particle size-sensitive components were extracted quantitatively using the log-normal distribution function, and their environmental implications were investigated. The contents of black soil mechanical composition ranged from 7.8% to 79.3% for clay, 17.7% to 80.3% for silt, and 0% to 73.7% for sand, respectively. Median particle size ranged from 1.71 to 142.67 μm, with a coefficient of variation of 60%, indicating silt accounted for the majority of the composition. Four environmentally sensitive components were identified, including long-distance transported airborne deposits of clay dust (C1), successions from local parent materials (C2), short-distance deposits of silt particles (C3), and a component strongly disturbed by human activities (C4). C1 and C2 had relatively low variations, with C1 exhibiting the smallest variation, and C2 contributing highest proportion, showing no significant differences across all samples. C3 widely existed across samples, suggesting common wind erosion within the black soil region. C3 and C4 varied spatially, which was caused by the low vegetation coverage and high human disturbance of agricultural topsoil. The results suggest that windbreaks should be encouraged to reduce wind erosion in the black soil regions.
Collapse
|
5
|
Jia X, Shao M, Wei X, Zhu Y, Wang Y, Hu W. Policy development for sustainable soil water use on China's Loess Plateau. Sci Bull (Beijing) 2020; 65:2053-2056. [PMID: 36732955 DOI: 10.1016/j.scib.2020.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Xiaoxu Jia
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ming'an Shao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Xiaorong Wei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Yuanjun Zhu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Yunqiang Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Wei Hu
- New Zealand Institute for Plant & Food Research Limited, Christchurch 8140, New Zealand
| |
Collapse
|
6
|
Zhang Z, Wang M, Liu J, Li X. Identification of the important environmental factors influencing natural vegetation succession following cropland abandonment on the Loess Plateau, China. PeerJ 2020; 8:e10349. [PMID: 33240658 PMCID: PMC7668204 DOI: 10.7717/peerj.10349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/21/2020] [Indexed: 11/20/2022] Open
Abstract
Identification of typical vegetation succession types and their important influencing factors is an important prerequisite to implement differential vegetation and soil management after land abandonment on the Loess Plateau, China. However, there is no reported study specifically on the identification of vegetation types and their important factors as well as the thresholds of the important factors for classification of the vegetation types, based on the medium- to long-term succession of natural vegetation after cropland abandonment. We collected vegetation and soil data on the natural vegetation with the longest 60-year-old forest communities that developed after cropland abandonment and analyzed the data using two-way indicator species analysis, detrended correspondence analysis, direct canonical correspondence analysis and classification tree model. The vegetation communities were classified into five distinct vegetation types, including Artemisia scoparia, Lespedeza davurica and Stipa bungeana, Artemisia giraldii pamp, Sophora viciifolia, Quercus liaotungensis and Biota orientalis. The years after cropland abandonment and soil C/N were further identified as important factors determining the types of vegetation. Likewise, it was observed that most of the investigated soil nutrient variables and soil texture-related variables improved with the vegetation succession while soil water in the surface layers showed a decreasing trend. These findings may provide an ecological basis for site-specific management of vegetation types after cropland abandonment in the medium-long term on the Loess Plateau. Our results encourage further exploration of vegetation succession and their important factors based on longer periods of vegetation succession after cropland abandonment under more soil and climatic conditions on the mountainous areas as the Loess Plateau.
Collapse
Affiliation(s)
- Zhenguo Zhang
- College of Resources and Environment, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Mingming Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
- Key Laboratory of Mollisols Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Jikai Liu
- College of Resources and Environment, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Xinwei Li
- College of Resources and Environment, Anhui Science and Technology University, Fengyang, Anhui, China
| |
Collapse
|
7
|
Luo Z, Yong C, Fan J, Shao M, Wang S, Jin M. Precipitation recharges the shallow groundwater of check dams in the loessial hilly and gully region of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140625. [PMID: 32721743 DOI: 10.1016/j.scitotenv.2020.140625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/28/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Check dams affect regional hydrological cycles and ecological environments. We conducted a field monitoring experiment in the Liudaogou Catchment on the Loess Plateau in China to determine the spatiotemporal response of shallow groundwater recharge and base flow by precipitation in check dams of this loessial hilly and gully region. The amount and seasonal distribution of precipitation directly affected the changes in shallow groundwater and base flow. The shallow groundwater was recharged by in situ vertical infiltration and lateral underground movement. Precipitation >30.0 mm d-1 recharged the shallow groundwater by piston flow when the water table in the check dam was <4.0 m. When the water table varied from the head (>4.0 m) to the middle and tail (<4.0 m) of the check dam, the influx of precipitation was by runoff in the catchment above the trench head, replenishing the groundwater vertically through the trench head and then moving laterally underground to the end of the dam. The response of the base flow and groundwater lagged the precipitation by a certain period. The lag time of the base flow was about 5-16 days, in which the response was more sensitive than for shallow groundwater. The lag time of the vertical supply for the response of the precipitation to the shallow groundwater was about 12-54 days, whereas the lag time for the lateral supply was about 72-93 days. The lag time may be associated with precipitation, temperature, solar radiation, vegetation water consumption and soil porosity. These findings will help elucidate the processes of groundwater recharge and provide new insight for managing the water balance in this loessial hilly and gully region.
Collapse
Affiliation(s)
- Zhanbin Luo
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Natural Resources and Environment, \Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Chenxu Yong
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Natural Resources and Environment, \Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Fan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China.
| | - Ming'an Shao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China.
| | - Sheng Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Resources and Environment, Southwest University, Beibei District, Chongqing 400715, China.
| | - Mu Jin
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Natural Resources and Environment, \Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
8
|
Jiang Y, Zhang Q, Deng X, Nan Z, Liang X, Wen H, Huang K, Wu Y. Single and competitive sorption of sulfadiazine and chlortetracycline on loess soil from Northwest China ☆. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114650. [PMID: 33618482 DOI: 10.1016/j.envpol.2020.114650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/31/2020] [Accepted: 04/20/2020] [Indexed: 06/12/2023]
Abstract
The fate of veterinary antibiotics (VAs) in soil environment is determined by the hydrophilic performance and solubility of VAs and the type of soil. In this study, sulfadiazine (SDZ) and chlortetracycline (CTC) were selected as target pollutants, and a batch sorption method was used to find out the single and sorption competitive behavior and mechanism of the target pollutants on loess soil. Kinetic studies showed the apparent sorption equilibrium was reached 0-6 h for CTC and 0-12 h for SDZ. The sorption kinetics of VAs on loess soil were fitted well with a pseudo-second order kinetic model. Sorption thermodynamic data indicated the isotherm sorption of both SDZ and CTC on loess soil was fitted well with Freundlich isothermal (R2, 0.960-0.975) and linear models (R2, 0.908-0.976). The sorption affinity of CTC (Kd, 290-1620 L/kg for CTC) was much greater than that of SDZ (Kd, 0.6-4.9 L/kg for SDZ). The results also suggest that SDZ may be easily mobilized or leached from loess soil at neutral and alkaline pH, while CTC may be easily mobilized or leached at neutral pH. The sorption of each single target pollutant on the outer layer complex decreased with increasing ionic strength. Higher initial concentrations resulted in greater sorption capacity of target pollutants on loess soil increased. The sorption capacities of CTC and SDZ in the mixed system were lower than the sorption capacity of each single system, showing a competitive sorption behavior of CTC and SDZ during the sorption process. Overall, CTC showed the highest sorption potential in loess soil, whereas SDZ showed a high leaching risk in loess soil. These findings contribute to understanding the fate of different VAs in loess in the natural environment.
Collapse
Affiliation(s)
- Yufeng Jiang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, China.
| | - Qian Zhang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, China
| | - Xueru Deng
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, China
| | - Zhijiang Nan
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, China
| | - Xinru Liang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, China
| | - Hong Wen
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, China
| | - Kui Huang
- College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, China
| | - Yingqin Wu
- Key Laboratory of Petroleum Resources Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|