1
|
Xiang L, Zhao D, Li Y, Saiding Q, Cui W. The future path to sutureless surgery: Self-adhesive tough hydrogel. Sci Bull (Beijing) 2024; 69:2307-2310. [PMID: 38902174 DOI: 10.1016/j.scib.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Affiliation(s)
- Lei Xiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ding Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yihan Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qimanguli Saiding
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
2
|
Yan B, Belke D, Gui Y, Chen YX, Jiang ZS, Zheng XL. Pharmacological inhibition of MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1) induces ferroptosis in vascular smooth muscle cells. Cell Death Discov 2023; 9:456. [PMID: 38097554 PMCID: PMC10721807 DOI: 10.1038/s41420-023-01748-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1) is a human paracaspase protein with proteolytic activity via its caspase-like domain. The pharmacological inhibition of MALT1 by MI-2, a specific chemical inhibitor, diminishes the response of endothelial cells to inflammatory stimuli. However, it is largely unknown how MALT1 regulates the functions of vascular smooth muscle cells (SMCs). This study aims to investigate the impact of MALT1 inhibition by MI-2 on the functions of vascular SMCs, both in vitro and in vivo. MI-2 treatment led to concentration- and time-dependent cell death of cultured aortic SMCs, which was rescued by the iron chelator deferoxamine (DFO) or ferrostatin-1 (Fer-1), a specific inhibitor of ferroptosis, but not by inhibitors of apoptosis (Z-VAD-fmk), pyroptosis (Z-YVAD-fmk), or necrosis (Necrostatin-1, Nec-1). MI-2 treatment downregulated the expression of glutathione peroxidase 4 (GPX4) and ferritin heavy polypeptide 1 (FTH1), which was prevented by pre-treatment with DFO or Fer-1. MI-2 treatment also activated autophagy, which was inhibited by Atg7 deficiency or bafilomycin A1 preventing MI-2-induced ferroptosis. MI-2 treatment reduced the cleavage of cylindromatosis (CYLD), a specific substrate of MALT1. Notably, MI-2 treatment led to a rapid loss of contractility in mouse aortas, which was prevented by co-incubation with Fer-1. Moreover, local application of MI-2 significantly reduced carotid neointima lesions and atherosclerosis in C57BL/6J mice and apolipoprotein-E knockout (ApoE-/-) mice, respectively, which were both ameliorated by co-treatment with Fer-1. In conclusion, the present study demonstrated that MALT1 inhibition induces ferroptosis of vascular SMCs, likely contributing to its amelioration of proliferative vascular diseases.
Collapse
Affiliation(s)
- Binjie Yan
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Darrell Belke
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yu Gui
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Yong-Xiang Chen
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| | - Xi-Long Zheng
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada.
| |
Collapse
|
3
|
Shen K, Sun G, Chan L, He L, Li X, Yang S, Wang B, Zhang H, Huang J, Chang M, Li Z, Chen T. Anti-Inflammatory Nanotherapeutics by Targeting Matrix Metalloproteinases for Immunotherapy of Spinal Cord Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102102. [PMID: 34510724 DOI: 10.1002/smll.202102102] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/26/2021] [Indexed: 05/24/2023]
Abstract
Neuroinflammation is critically involved in the repair of spinal cord injury (SCI), and macrophages associated with inflammation propel the degeneration or recovery in the pathological process. Currently, efforts have been focused on obtaining efficient therapeutic anti-inflammatory drugs to treat SCI. However, these drugs are still unable to penetrate the blood spinal cord barrier and lack the ability to target lesion areas, resulting in unsatisfactory clinical efficacy. Herein, a polymer-based nanodrug delivery system is constructed to enhance the targeting ability. Because of increased expression of matrix metalloproteinases (MMPs) in injured site after SCI, MMP-responsive molecule, activated cell-penetrating peptides (ACPP), is introduced into the biocompatible polymer PLGA-PEI-mPEG (PPP) to endow the nanoparticles with the ability for diseased tissue-targeting. Meanwhile, etanercept (ET), a clinical anti-inflammation treatment medicine, is loaded on the polymer to regulate the polarization of macrophages, and promote locomotor recovery. The results show that PPP-ACPP nanoparticles possess satisfactory lesion targeting effects. Through inhibited consequential production of proinflammation cytokines and promoted anti-inflammation cytokines, ET@PPP-ACPP could decrease the percentage of M1 macrophages and increase M2 macrophages. As expected, ET@PPP-ACPP accumulates in lesion area and achieves effective treatment of SCI; this confirmed the potential of nano-drug loading systems in SCI immunotherapy.
Collapse
Affiliation(s)
- Kui Shen
- Department of Orthopedics, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Guodong Sun
- Department of Orthopedics, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou, Guangdong, 510632, China
- The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Leung Chan
- Department of Orthopedics, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Lizhen He
- Department of Orthopedics, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiaowei Li
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, Guangdong, 519000, P. R. China
- The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Shuxian Yang
- Department of Orthopedics, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou, Guangdong, 510632, China
- The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Baocheng Wang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Hua Zhang
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, Guangdong, 519000, P. R. China
- The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou, 510632, P. R. China
| | - Jiarun Huang
- Department of Orthopedics, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Minmin Chang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhizhong Li
- Department of Orthopedics, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou, Guangdong, 510632, China
- The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Tianfeng Chen
- Department of Orthopedics, The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou, Guangdong, 510632, China
| |
Collapse
|
4
|
Chen KB, Chang MM, Wang SL, Li YX, Wang YX, Xu ZG, Wang H, Zhao BC, Ma WY. High mobility group box-1 serves a pathogenic role in spinal cord injury via the promotion of pro-inflammatory cytokines. J Leukoc Biol 2021; 110:1131-1142. [PMID: 34402106 DOI: 10.1002/jlb.3ma0721-007r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating condition marked by permanent motor, sensory, and autonomic dysfunction, in which the inflammatory response serves an important and preventable role. High mobility group box-1 (HMGB1) is a potent regulator of inflammation in numerous acute and chronic inflammatory conditions.; however, the role of HMGB1 in SCI remains unclear. The present study aimed to characterize the temporal dynamics of HMGB1 release after SCI, to investigate the role of spinal microglia activation in mediating the effects of HMGB1 on SCI, and to explore the therapeutic potential of intrathecal anti-HMGB1 polyclonal antibody on alleviating SCI. The present study demonstrated that HMGB1 expression was increased immediately after traumatic injury of a primary spinal neuron culture. It was found that neutralizing HMGB1 significantly ameliorated SCI pathogenesis and hind limb paralysis. Moreover, the levels of a number of pro-inflammatory cytokines in the SCI lesion were reduced when local HMGB1 was blocked by anti-HMGB1 antibody. In addition, the injured neuron-derived conditioned medium increased TNF-α secretion and the NF-κB pathway in the BV2 microglia cell line via HMGB1. Collectively, these results indicated that HMGB1 served an important role in SCI inflammation and suggested the therapeutic potential of an anti-HMGB1 antibody for SCI.
Collapse
Affiliation(s)
- Ke-Bing Chen
- Department of Spine Surgery, Center for Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Min-Min Chang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, P.R. China
| | - Sheng-Li Wang
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, Guangdong, P.R. China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, P.R. China
| | - Yong-Xin Li
- Vascular Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Yi-Xi Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Zhi-Guang Xu
- Department of Spine Surgery, Center for Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Bing-Cheng Zhao
- Department of Anesthesiology, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Wei-Ying Ma
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
5
|
Xia X, Cao G, Sun G, Zhu L, Tian Y, Song Y, Guo C, Wang X, Zhong J, Zhou W, Li P, Zhang H, Hao J, Li Z, Deng L, Yin Z, Gao Y. GLS1-mediated glutaminolysis unbridled by MALT1 protease promotes psoriasis pathogenesis. J Clin Invest 2020; 130:5180-5196. [PMID: 32831293 PMCID: PMC7524468 DOI: 10.1172/jci129269] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
Psoriasis is a severe disease associated with the disturbance of metabolism and inflammation, but the molecular mechanisms underlying these aspects of psoriasis pathology are poorly understood. Here, we report that glutaminase 1-mediated (GLS1-mediated) glutaminolysis was aberrantly activated in patients with psoriasis and in psoriasis-like mouse models, which promoted Th17 and γδ T17 (IL-17A-producing γδ T) cell differentiation through enhancement of histone H3 acetylation of the Il17a promoter, thereby contributing to the immune imbalance and development of psoriasis. We further demonstrate that mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) protease was constitutively active in psoriatic CD4+ and γδ T cells, thereby supporting GLS1 expression by stabilizing c-Jun, which directly binds to the GLS1 promoter region. Blocking the activity of either GLS1 or MALT1 protease resolved Th17 and γδ T17 cell differentiation and epidermal hyperplasia in the psoriasis-like mouse models. Finally, IL-17A enhanced GLS1 expression via the MALT1/cJun pathway in keratinocytes, resulting in hyperproliferation of and chemokine production by keratinocytes. Our findings identify the role of the MALT1/cJun/GLS1/glutaminolysis/H3 acetylation/T17 axis in psoriasis pathogenesis and reveal potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Xichun Xia
- First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Guangchao Cao
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Jinan University, Zhuhai, Guangdong, China
- Biomedical Translational Research Institute, Faculty of Medical Science, and
| | | | - Leqing Zhu
- First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Yixia Tian
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Jinan University, Zhuhai, Guangdong, China
| | - Yueqi Song
- First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Chengbin Guo
- First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Xiao Wang
- First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Jingxiang Zhong
- Department of Ophthalmology, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Wei Zhou
- First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Peng Li
- First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Hua Zhang
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Jinan University, Zhuhai, Guangdong, China
| | - Jianlei Hao
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Jinan University, Zhuhai, Guangdong, China
- Biomedical Translational Research Institute, Faculty of Medical Science, and
| | - Zhizhong Li
- Department of Orthopedics and
- Department of Orthopedics, Heyuan People’s Hospital, Jinan University, Heyuan, Guangdong, China
| | - Liehua Deng
- Department of Dermatology, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Zhinan Yin
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Jinan University, Zhuhai, Guangdong, China
- Biomedical Translational Research Institute, Faculty of Medical Science, and
| | - Yunfei Gao
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Jinan University, Zhuhai, Guangdong, China
- Biomedical Translational Research Institute, Faculty of Medical Science, and
| |
Collapse
|