1
|
Zhu GB, Guo C, Ren XL, Li MZ, Lu DY, Hu XL, Huang H, James TD, He XP. Non-natural sialic acid derivatives with o-nitrobenzyl alcohol substituents for light-mediated protein conjugation and cell imaging. Org Biomol Chem 2024. [PMID: 39494475 DOI: 10.1039/d4ob01563k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
We have synthesized two sialic acid derivatives substituted with an ortho-nitrobenzyl alcohol (o-NBA) group that can undergo light-mediated conjugation with primary amines at their 5- or 9-carbon position. The o-NBA derivatives were shown to react with multiple lysine residues of human serum albumin (HSA) when exposed to 365 nm light irradiation within 10 min. The resulting sugar conjugates were characterized by mass spectroscopy and used for fluorescence-based cell imaging.
Collapse
Affiliation(s)
- Guo-Biao Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai 200237, China.
| | - Chen Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai 200237, China.
| | - Xue-Lian Ren
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ming-Zhe Li
- Shanghai World Foreign Language Academy, No. 400 Baihua Street, Shanghai 200233, China
| | - Di-Ya Lu
- Shanghai World Foreign Language Academy, No. 400 Baihua Street, Shanghai 200233, China
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai 200237, China.
| | - He Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai 200237, China.
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, National Center for Liver Cancer, Shanghai 200438, China
- Shanghai World Foreign Language Academy, No. 400 Baihua Street, Shanghai 200233, China
| |
Collapse
|
2
|
Liu GJ, Zhang JD, Zhou W, Feng GL, Xing GW. Recent advances in sugar-based AIE luminogens and their applications in sensing and imaging. Chem Commun (Camb) 2024; 60:11899-11915. [PMID: 39323243 DOI: 10.1039/d4cc03850a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Most fluorogens with aggregation-induced emission (AIE) characteristics are hydrophobic and most common sugars are hydrophilic and naturally nontoxic. The combination of AIEgens and sugars can construct glycosyl AIEgens with the advantages of good water-solubility, low fluorescent background and satisfactory biocompatibility. Based on the specific reaction or binding with analytes to change the conjugate system or restrict intramolecular motions, glycosyl AIEgens can be used as powerful tools for detecting bioactive molecules or imaging living cells. In this feature article, we summarize recent advances in sugar-based AIE luminogens and their applications in biosensing and imaging. The sugar units could significantly increase the solubility, biocompatibility, target activity, and chemical modifying capacity and often decrease the background fluorescence of the AIE probes. Corresponding studies not only expand the application fields of AIEgens but also provide effective tools for broad carbohydrate research.
Collapse
Affiliation(s)
- Guang-Jian Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Jing-Dong Zhang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Wei Zhou
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Gai-Li Feng
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Guo-Wen Xing
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
3
|
Dou WT, Tong PH, Xing M, Liu JJ, Hu XL, James TD, Zhou DM, He XP. Fluorogenic Peptide Sensor Array Derived from Angiotensin-Converting Enzyme 2 Classifies Severe Acute Respiratory Syndrome Coronavirus 2 Variants of Concern. J Am Chem Soc 2024; 146:21017-21024. [PMID: 39029108 PMCID: PMC11295173 DOI: 10.1021/jacs.4c06172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/21/2024]
Abstract
The devastating COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made society acutely aware of the urgency in developing effective techniques to timely monitor the outbreak of previously unknown viral species as well as their mutants, which could be even more lethal and/or contagious. Here, we report a fluorogenic sensor array consisting of peptides truncated from the binding domain of human angiotensin-converting enzyme 2 (hACE2) for SARS-CoV-2. A set of five fluorescently tagged peptides were used to construct the senor array in the presence of different low-dimensional quenching materials. When orthogonally incubated with the wild-type SARS-CoV-2 and its variants of concern (VOCs), the fluorescence of each peptide probe was specifically recovered, and the different recovery rates provide a "fingerprint" characteristic of each viral strain. This, in turn, allows them to be differentiated from each other using principal component analysis. Interestingly, the classification result from our sensor array agrees well with the evolutionary relationship similarity of the VOCs. This study offers insight into the development of effective sensing tools for highly contagious viruses and their mutants based on rationally truncating peptide ligands from human receptors.
Collapse
Affiliation(s)
- Wei-Tao Dou
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Frontiers Center for
Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Pei-Hong Tong
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Frontiers Center for
Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Man Xing
- Department
of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jiao-Jiao Liu
- Department
of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xi-Le Hu
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Frontiers Center for
Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
- School of
Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| | - Dong-Ming Zhou
- Vaccine
and Immunity Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
- Department
of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiao-Peng He
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Frontiers Center for
Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, 130 Meilong Rd., Shanghai 200237, China
- The
International Cooperation Laboratory on Signal Transduction, National
Center for Liver Cancer, Eastern Hepatobiliary
Surgery Hospital, Shanghai 200438, China
| |
Collapse
|
4
|
Zhang Z, Wang Q, Zhang X, Mei J, Tian H. Multimode Stimuli-Responsive Room-Temperature Phosphorescence Achieved by Doping Butterfly-like Fluorogens into Crystalline Small-Molecular Hosts. JACS AU 2024; 4:1954-1965. [PMID: 38818060 PMCID: PMC11134381 DOI: 10.1021/jacsau.4c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024]
Abstract
Materials with stimuli-responsive purely organic room-temperature phosphorescence (RTP) exempt from exquisite molecular design and complex preparation are highly desirable but still relatively rare. Moreover, most of them work in a single switching mode. Herein, we employ a versatile host-guest-doped strategy to facilely construct efficient RTP systems with multimode stimuli-responsiveness without ingenious molecular design. By conveniently doping butterfly-like guests, namely, N,N'-diphenyl-dihydrodibenzo[a,c]phenazines (DPACs), featured with vibration-induced emission into the small-molecular hosts via various methods, RTP systems with finely tunable photophysical properties are readily obtained. Through systematic mechanistic studies and with the aid of a series of control experiments, we unveil the critical role of the host crystallinity in achieving efficient RTP. By virtue of the inherent environmental sensitivity of both RTP and fluorescence of the DPACs, our systems exhibit multiple-stimuli-responsiveness with the luminescence not only switching between the fluorescence and phosphorescence but also continuously changing in the fluorescence color. Advanced dynamic anticounterfeiting and multilevel information encryption is thereby realized.
Collapse
Affiliation(s)
- Zhaozhi Zhang
- Key Laboratory for Advanced Materials,
Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science
Center for Materiobiology and Dynamic Chemistry, Joint International
Research Laboratory for Precision Chemistry and Molecular Engineering,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Qijing Wang
- Key Laboratory for Advanced Materials,
Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science
Center for Materiobiology and Dynamic Chemistry, Joint International
Research Laboratory for Precision Chemistry and Molecular Engineering,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xinyi Zhang
- Key Laboratory for Advanced Materials,
Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science
Center for Materiobiology and Dynamic Chemistry, Joint International
Research Laboratory for Precision Chemistry and Molecular Engineering,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Ju Mei
- Key Laboratory for Advanced Materials,
Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science
Center for Materiobiology and Dynamic Chemistry, Joint International
Research Laboratory for Precision Chemistry and Molecular Engineering,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials,
Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science
Center for Materiobiology and Dynamic Chemistry, Joint International
Research Laboratory for Precision Chemistry and Molecular Engineering,
Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
5
|
Behera P, De M. Surface-Engineered Nanomaterials for Optical Array Based Sensing. Chempluschem 2024; 89:e202300610. [PMID: 38109071 DOI: 10.1002/cplu.202300610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Array based sensing governed by optical methods provides fast and economic way for detection of wide variety of analytes where the ideality of detection processes depends on the sensor element's versatile mode of interaction with multiple analytes in an unbiased manner. This can be achieved by either the receptor unit having multiple recognition moiety, or their surface property should possess tuning ability upon fabrication called surface engineering. Nanomaterials have a high surface to volume ratio, making them viable candidates for molecule recognition through surface adsorption phenomena, which makes it ideal to meet the above requirements. Most crucially, by engineering a nanomaterial's surface, one may produce cross-reactive responses for a variety of analytes while focusing solely on a single nanomaterial. Depending on the nature of receptor elements, in the last decade the array-based sensing has been considering as multimodal detection platform which operates through various pathway including single channel, multichannel, binding and indicator displacement assay, sequential ON-OFF sensing, enzyme amplified and nanozyme based sensing etc. In this review we will deliver the working principle for Array-based sensing by using various nanomaterials like nanoparticles, nanosheets, nanodots and self-assembled nanomaterials and their surface functionality for suitable molecular recognition.
Collapse
Affiliation(s)
- Pradipta Behera
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
6
|
Zhang M, Zhang S, Guo X, Xun Z, Wang L, Liu Y, Mou W, Qin T, Xu Z, Wang L, Chen X, Liu B, Peng X. Fast, portable, selective, and ratiometric determination of ochratoxin A (OTA) by a fluorescent supramolecular sensor. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133104. [PMID: 38071774 DOI: 10.1016/j.jhazmat.2023.133104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 02/08/2024]
Abstract
Ochratoxin A (OTA), a mycotoxin found in various food items, possesses significant health risks due to its carcinogenic and toxic properties. Thus, detecting OTA is crucial to ensure food safety. Among the reported analytical methods, there has yet to be one that achieves fast, selective, and portable detection of OTA. In this study, we explore a novel supramolecular sensor, DOCE@ALB, utilizing human serum albumin as the host and a flavonoid fluorescent indicator as the guest. On the basis of indicator displacement assay, this sensor boasts an ultra-fast response time of just 5 s, high sensitivity with a limit of detection at 0.39 ppb, exceptional selectivity, and a noticeable ratiometric fluorescence response to OTA. This discernible color change and portability of the sensor make it suitable for on-site OTA detection in real food samples, including flour, beer, and wine, simply using a smartphone. In comparison to previously reported methods, our approach has showcased notable advantages in both response time and portability, addressing a critical need for food safety and regulatory compliance.
Collapse
Affiliation(s)
- Mingyuan Zhang
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, China
| | - Shiwei Zhang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518060, China
| | - Xindong Guo
- Guangzhou Quality Supervision and Testing Institute, Guangzhou City Research Center of Risk Dynamic Detection and Early Warning for Food Safety, Guangzhou City, Key Laboratory of Detection Technology for Food Safety, Guangzhou 511447, China
| | - Zhiqing Xun
- Guangzhou Quality Supervision and Testing Institute, Guangzhou City Research Center of Risk Dynamic Detection and Early Warning for Food Safety, Guangzhou City, Key Laboratory of Detection Technology for Food Safety, Guangzhou 511447, China
| | - Lingling Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yamin Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Weijie Mou
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, China
| | - Tianyi Qin
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Zhongyong Xu
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, China
| | - Lei Wang
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, China
| | - Xiaoqiang Chen
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, China
| | - Bin Liu
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, China.
| | - Xiaojun Peng
- College of Material Science and Engineering, State Key Laboratory of Fine Chemicals, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
7
|
Zhang Z, Wang Q, Zhang X, Mei D, Mei J. Modulating the Luminescence, Photosensitizing Properties, and Mitochondria-Targeting Ability of D-π-A-Structured Dihydrodibenzo[ a, c]phenazines. Molecules 2023; 28:6392. [PMID: 37687220 PMCID: PMC10490149 DOI: 10.3390/molecules28176392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Herein, pyridinium and 4-vinylpyridinium groups are introduced into the VIE-active N,N'-disubstituted-dihydrodibenzo[a,c]phenazines (DPAC) framework to afford a series of D-π-A-structured dihydrodibenzo[a,c]phenazines in consideration of the aggregation-benefited performance of the DPAC module and the potential mitochondria-targeting capability of the resultant pyridinium-decorated DPACs (DPAC-PyPF6 and DPAC-D-PyPF6). To modulate the properties and elucidate the structure-property relationship, the corresponding pyridinyl/4-vinylpyridinyl-substituted DPACs, i.e., DPAC-Py and DPAC-D-Py, are designed and studied as controls. It is found that the strong intramolecular charge transfer (ICT) effect enables the effective separation of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of DPAC-PyPF6 and DPAC-D-PyPF6, which is conducive to the generation of ROS. By adjusting the electron-accepting group and the π-bridge, the excitation, absorption, luminescence, photosensitizing properties as well as the mitochondria-targeting ability can be finely tuned. Both DPAC-PyPF6 and DPAC-D-PyPF6 display large Stokes shifts (70-222 nm), solvent-dependent absorptions and emissions, aggregation-induced emission (AIE), red fluorescence in the aggregated state (λem = 600-650 nm), aggregation-promoted photosensitizing ability with the relative singlet-oxygen quantum yields higher than 1.10, and a mitochondria-targeting ability with the Pearson coefficients larger than 0.85. DPAC-D-PyPF6 shows absorption maximum at a longer wavelength, slightly redder fluorescence and better photosensitivity as compared to DPAC-PyPF6, which consequently leads to the higher photocytotoxicity under the irradiation of white light as a result of the larger π-conjugation.
Collapse
Affiliation(s)
- Zhaozhi Zhang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China; (Z.Z.); (Q.W.); (X.Z.)
| | - Qijing Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China; (Z.Z.); (Q.W.); (X.Z.)
| | - Xinyi Zhang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China; (Z.Z.); (Q.W.); (X.Z.)
| | - Dong Mei
- Clinical Research Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Ju Mei
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China; (Z.Z.); (Q.W.); (X.Z.)
| |
Collapse
|
8
|
Zhong CJ, Hu XL, Yang XL, Gan HQ, Yan KC, Shu FT, Wei P, Gong T, Luo PF, James TD, Chen ZH, Zheng YJ, He XP, Xia ZF. Metabolically Specific In Situ Fluorescent Visualization of Bacterial Infection on Wound Tissues. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39808-39818. [PMID: 36005548 DOI: 10.1021/acsami.2c10115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ability to effectively detect bacterial infection in human tissues is important for the timely treatment of the infection. However, traditional techniques fail to visualize bacterial species adhered to host cells in situ in a target-specific manner. Dihydropteroate synthase (DHPS) exclusively exists in bacterial species and metabolically converts p-aminobenzoic acid (PABA) to folic acid (FA). By targeting this bacterium-specific metabolism, we have developed a fluorescent imaging probe, PABA-DCM, based on the conjugation of PABA with a long-wavelength fluorophore, dicyanomethylene 4H-pyran (DCM). We confirmed that the probe can be used in the synthetic pathway of a broad spectrum of Gram-positive and negative bacteria, resulting in a significantly extended retention time in bacterial over mammalian cells. We validated that DHPS catalytically introduces a dihydropteridine group to the amino end of the PABA motif of PABA-DCM, and the resulting adduct leads to an increase in the FA levels of bacteria. We also constructed a hydrogel dressing containing PABA-DCM and graphene oxide (GO), termed PABA-DCM@GO, that achieves target-specific fluorescence visualization of bacterial infection on the wounded tissues of mice. Our research paves the way for the development of fluorescent imaging agents that target species-conserved metabolic pathways of microorganisms for the in situ monitoring of infections in human tissues.
Collapse
Affiliation(s)
- Chen-Jian Zhong
- Department of Burn Surgery and Wound Repair, Fujian Burn Medical Center, Fujian Provincial Key Laboratory of Burn and Trauma, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, PR China
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, PR China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Xiao-Lan Yang
- Department of Burn Surgery and Wound Repair, Fujian Burn Medical Center, Fujian Provincial Key Laboratory of Burn and Trauma, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, PR China
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, PR China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
- Department of Burn Surgery and Wound Repair, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362001, Fujian, China
| | - Hui-Qi Gan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Kai-Cheng Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Fu-Ting Shu
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, PR China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
| | - Pei Wei
- Department of Burn Surgery and Wound Repair, Fujian Burn Medical Center, Fujian Provincial Key Laboratory of Burn and Trauma, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, PR China
| | - Teng Gong
- Department of Burn Surgery and Wound Repair, Fujian Burn Medical Center, Fujian Provincial Key Laboratory of Burn and Trauma, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, PR China
| | - Peng-Fei Luo
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, PR China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA27AY, United Kingdom
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Zhao-Hong Chen
- Department of Burn Surgery and Wound Repair, Fujian Burn Medical Center, Fujian Provincial Key Laboratory of Burn and Trauma, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, PR China
| | - Yong-Jun Zheng
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, PR China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
- National Center for Liver Cancer, Shanghai 200438, China
| | - Zhao-Fan Xia
- Department of Burn Surgery and Wound Repair, Fujian Burn Medical Center, Fujian Provincial Key Laboratory of Burn and Trauma, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, PR China
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, PR China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
| |
Collapse
|
9
|
Xu FZ, Zhu L, Han HH, Zou JW, Zang Y, Li J, James TD, He XP, Wang CY. Molecularly engineered AIEgens with enhanced quantum and singlet-oxygen yield for mitochondria-targeted imaging and photodynamic therapy. Chem Sci 2022; 13:9373-9380. [PMID: 36092996 PMCID: PMC9384827 DOI: 10.1039/d2sc00889k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
Luminogens characteristic of aggregation-induced emission (AIEgens) have been extensively exploited for the development of imaging-guided photodynamic therapeutic (PDT) agents. However, intramolecular rotation of donor-acceptor (D-A) type AIEgens favors non-radiative decay of photonic energy which results in unsatisfactory fluorescence quantum and singlet oxygen yields. To address this issue, we developed several molecularly engineered AIEgens with partially "locked" molecular structures enhancing both fluorescence emission and the production of triplet excitons. A triphenylphosphine group was introduced to form a D-A conjugate, improving water solubility and the capacity for mitochondrial localization of the resulting probes. Experimental and theoretical analyses suggest that the much higher quantum and singlet oxygen yield of a structurally "significantly-locked" probe (LOCK-2) than its "partially locked" (LOCK-1) and "unlocked" equivalent (LOCK-0) is a result of suppressed AIE and twisted intramolecular charge transfer. LOCK-2 was also used for the mitochondrial-targeting, fluorescence image-guided PDT of liver cancer cells.
Collapse
Affiliation(s)
- Fang-Zhou Xu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 China
| | - Ling Zhu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 China
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 P. R. China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery Shandong 264117 Yantai P. R. China
| | - Jian-Wei Zou
- NingboTech University Ningbo 315100 Zhejiang PR China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 P. R. China
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 P. R. China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery Shandong 264117 Yantai P. R. China
| | - Tony D James
- Department of Chemistry, University of Bath Bath BA2 7AY UK
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 China
| | - Cheng-Yun Wang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 China
| |
Collapse
|
10
|
Lu K, Wang Y, Zhang H, Tian C, Wang W, Yang T, Qi B, Wu S. Rational Design of a Theranostic Agent Triggered by Endogenous Nitric Oxide in a Cellular Model of Alzheimer's Disease. J Med Chem 2022; 65:9193-9205. [PMID: 35729801 DOI: 10.1021/acs.jmedchem.2c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxidative damage caused by upregulated nitric oxide (NO) plays an important role in the pathogenesis of Alzheimer's disease (AD). Currently, stimulus-triggered theranostic agents have received much attention due to benefits on disease imaging and targeted therapeutic effects. However, the development of a theranostic agent triggered by NO for AD remains unexplored. Herein, through the mechanism analysis of the reaction between a fluorophore of 9,14-diphenyl-9,14-dihydrodibenzo[a,c]phenazine (DPAC) and NO, which we occasionally found and thereafter structure optimization of DPAC, a theranostic agent DPAC-(peg)4-memantine was fabricated. In an AD cellular model, DPAC-(peg)4-memantine exhibits NO sensing ability for AD imaging. Meanwhile, DPAC-(peg)4-memantine shows improved therapeutic by targeted drug release triggered by NO and sustained therapeutic effects owing to the synergetic antioxidative abilities via the anti-AD drug and NO scavenging. This work provides an unprecedented avenue for the studies on not only AD but also other diseases with NO upregulation.
Collapse
Affiliation(s)
- Kang Lu
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Yu Wang
- Department of Orthopaedic Trauma, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P. R. China
| | - Hao Zhang
- Department of Orthopaedic Trauma, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P. R. China
| | - Cuiqing Tian
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Wenxiang Wang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Tian Yang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Baiwen Qi
- Department of Orthopaedic Trauma, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P. R. China
| | - Song Wu
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China
| |
Collapse
|
11
|
Dong L, Zhang MY, Han HH, Zang Y, Chen GR, Li J, He XP, Vidal S. A general strategy to the intracellular sensing of glycosidases using AIE-based glycoclusters. Chem Sci 2021; 13:247-256. [PMID: 35059174 PMCID: PMC8694377 DOI: 10.1039/d1sc05057e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022] Open
Abstract
Glycosidases, which are the enzymes responsible for the removal of residual monosaccharides from glycoconjugates, are involved in many different biological and pathological events. The ability to detect sensitively the activity and spatiotemporal distribution of glycosidases in cells will provide useful tools for disease diagnosis. However, the currently developed fluorogenic probes for glycosidases are generally based on the glycosylation of the phenol group of a donor-acceptor type fluorogen. This molecular scaffold has potential drawbacks in terms of substrate scope, sensitivity because of aggregation-caused quenching (ACQ), and the inability for long-term cell tracking. Here, we developed glycoclusters characterized by aggregation-induced emission (AIE) properties as a general platform for the sensing of a variety of glycosidases. To overcome the low chemical reactivity associated with phenol glycosylation, here we developed an AIE-based scaffold, which is composed of tetraphenylethylene conjugated with dicyanomethylene-4H-pyran (TPE-DCM) with a red fluorescence emission. Subsequently, a pair of dendritic linkages was introduced to both sides of the fluorophore, to which six copies of monosaccharides (d-glucose, d-galactose or l-fucose) were introduced through azide-alkyne click chemistry. The resulting AIE-active glycoclusters were shown to be capable of (1) fluorogenic sensing of a diverse range of glycosidases including β-d-galactosidase, β-d-glucosidase and α-l-fucosidase through the AIE mechanism, (2) fluorescence imaging of the endogenous glycosidase activities in healthy and cancer cells, and during cell senescence, and (3) glycosidase-activated, long-term imaging of cells. The present study provides a general strategy to the functional, in situ imaging of glycosidase activities through the multivalent display of sugar epitopes of interest onto properly designed AIE-active fluorogens.
Collapse
Affiliation(s)
- Lei Dong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 P. R. China
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2-Glycochimie, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Université de Lyon 1 Rue Victor Grignard F-69622 Villeurbanne France
| | - Min-Yu Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 P. R. China
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 P. R. China
| | - Yi Zang
- National Centre for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 P. R. China
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 P. R. China
| | - Jia Li
- National Centre for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 P. R. China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Rd. Shanghai 200237 P. R. China
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2-Glycochimie, UMR 5246, CNRS, Université Claude Bernard Lyon 1, Université de Lyon 1 Rue Victor Grignard F-69622 Villeurbanne France
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301 91198 Gif-sur-Yvette France
| |
Collapse
|
12
|
Zhou M, Gan HQ, Chen GR, James TD, Zhang B, Hu Q, Xu F, Hu XL, He XP, Mai Y. Near-Infrared Light-Triggered Bacterial Eradication Using a Nanowire Nanocomposite of Graphene Nanoribbons and Chitosan-Coated Silver Nanoparticles. Front Chem 2021; 9:767847. [PMID: 34778216 PMCID: PMC8579076 DOI: 10.3389/fchem.2021.767847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial infection is a major threat to human health. However, many antibacterial agents currently used are severely limited due to drug-resistance, and the development of side effects. Herein, we have developed a non-antibiotic nanocomposite consisting of chitosan (ChS) coated silver nanoparticles (AgNPs) and graphene nanoribbon (GNR)-based nanowires for light-triggered eradication of bacteria. The presence of AgNP/ChS significantly enhanced the interactions of the GNR nanowires with Pseudomonas aeruginosa, a clinically common Gram-negative bacterium. Which enables the highly effective photothermal eradication of bacteria by GNR upon near-infrared light irradiation. The nanocomposite was shown to be applicable for the light-triggered eradication of bacterial biofilms and the inhibition of bacterial growth on medical patches used for abdominal-wall hernia surgery.
Collapse
Affiliation(s)
- Ming Zhou
- Department of General Surgery, Shanghai Xuhui District Dahua Hospital, Shanghai, China
| | - Hui-Qi Gan
- Feringa Nobel Prize Scientist Joint Research Center, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Guo-Rong Chen
- Feringa Nobel Prize Scientist Joint Research Center, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, United Kingdom
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Bin Zhang
- Department of General Surgery, Shanghai Xuhui District Dahua Hospital, Shanghai, China
| | - Qiang Hu
- Department of General Surgery, Shanghai Xuhui District Dahua Hospital, Shanghai, China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, China
| | - Xi-Le Hu
- Feringa Nobel Prize Scientist Joint Research Center, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiao-Peng He
- Feringa Nobel Prize Scientist Joint Research Center, Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Tao L, Liu S, Xia X, Chai Y, Cai S, Liu H, Lu C, Ma C, Nie J, Zeng F, Sun Q, Mao W, Yang G, Ren J, Wang F. Near-infrared fluorescent read-out probe for ultra-sensitive imaging of leucine aminopeptidase in vitro and in vivo. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Zhao D, Han HH, Zhu L, Xu FZ, Ma XY, Li J, James TD, Zang Y, He XP, Wang C. Long-Wavelength AIE-Based Fluorescent Probes for Mitochondria-Targeted Imaging and Photodynamic Therapy of Hepatoma Cells. ACS APPLIED BIO MATERIALS 2021; 4:7016-7024. [PMID: 35006934 DOI: 10.1021/acsabm.1c00673] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With this research, we have developed two long-wavelength theranostic probes (DCMT and DCMC) with aggregation-induced emission (AIE)-based properties for image-guided photodynamic therapy (PDT) of hepatoma cells. Introduction of a triphenylamine or carbazole group to a dicyanomethylene-4H-pyran dye with long-wavelength fluorescence emission produces the AIE-based probes, which were subsequently modified with triphenyl-phosphonium cation for actively targeting the mitochondria of hepatoma cells. Solution-based experiments show that the probes exhibit a mixed photophysical mechanism of twisted-intramolecular charge transfer and AIE at different aggregation states. The molecular aggregation of the probes also leads to an enhanced ability for oxygen photosensitization, suggesting their potential for PDT of cancer cells. Our subsequent cell-based assays show that the probes localize in the mitochondria of hepatoma cells and the use of light leads to cell death through the intracellular production of reactive oxygen species.
Collapse
Affiliation(s)
- Dan Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ling Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Fang-Zhou Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xing-Yu Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chengyun Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
15
|
Dou WT, Xu F, Xu CX, Gao J, Ru HB, Luan X, Zhang J, Zhu L, Sedgwick AC, Chen GR, Zang Y, James TD, Tian H, Li J, Mai Y, He XP. Graphene nanoribbon-based supramolecular ensembles with dual-receptor targeting function for targeted photothermal tumor therapy. Chem Sci 2021; 12:11089-11097. [PMID: 34522306 PMCID: PMC8386659 DOI: 10.1039/d1sc02154k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/12/2021] [Indexed: 12/31/2022] Open
Abstract
Triple negative breast cancer (TNBC) is one of the most malignant subtypes of breast cancer. Here, we report the construction of graphene nanoribbon (GNR)-based supramolecular ensembles with dual-receptor (mannose and αvβ3 integrin receptors) targeting function, denoted as GNR-Man/PRGD, for targeted photothermal treatment (PTT) of TNBC. The GNR-Man/PRGD ensembles were constructed through the solution-based self-assembly of mannose-grafted GNRs (GNR-Man) with a pyrene-tagged αvβ3 integrin ligand (PRGD). Enhanced PTT efficacies were achieved both in vitro and in vivo compared to that of the non-targeting equivalents. Tumor-bearing live mice were administered (tail vein) with GNR-Man/PRGD and then each mice group was subjected to PTT. Remarkably, GNR-Man/PRGD induced complete ablation of the solid tumors, and no tumor regrowth was observed over a period of 15 days. This study demonstrates a new and promising platform for the development of photothermal nanomaterials for targeted tumor therapy.
Collapse
Affiliation(s)
- Wei-Tao Dou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology 130 Meilong RD Shanghai 200237 P. R. China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University 800 Dongchuan RD Shanghai 200240 P. R. China
| | - Chen-Xi Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology 130 Meilong RD Shanghai 200237 P. R. China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 P. R. China
| | - Jie Gao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology 130 Meilong RD Shanghai 200237 P. R. China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 P. R. China
| | - Hong-Bo Ru
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 P. R. China
| | - Xiangfeng Luan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University 800 Dongchuan RD Shanghai 200240 P. R. China
| | - Jiacheng Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University 800 Dongchuan RD Shanghai 200240 P. R. China
| | - Ling Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology 130 Meilong RD Shanghai 200237 P. R. China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 P. R. China
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin Austin Texas 78712-1224 USA
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology 130 Meilong RD Shanghai 200237 P. R. China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 P. R. China
| | - Tony D James
- Department of Chemistry, University of Bath Bath BA2 7AY UK
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology 130 Meilong RD Shanghai 200237 P. R. China
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 189 Guo Shoujing Rd. Shanghai 201203 P. R. China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University 800 Dongchuan RD Shanghai 200240 P. R. China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology 130 Meilong RD Shanghai 200237 P. R. China
| |
Collapse
|
16
|
Hu XL, Shang Y, Yan KC, Sedgwick AC, Gan HQ, Chen GR, He XP, James TD, Chen D. Low-dimensional nanomaterials for antibacterial applications. J Mater Chem B 2021; 9:3640-3661. [PMID: 33870985 DOI: 10.1039/d1tb00033k] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The excessive use of antibiotics has led to a rise in drug-resistant bacteria. These "superbugs" are continuously emerging and becoming increasingly harder to treat. As a result, new and effective treatment protocols that have minimal risks of generating drug-resistant bacteria are urgently required. Advanced nanomaterials are particularly promising due to their drug loading/releasing capabilities combined with their potential photodynamic/photothermal therapeutic properties. In this review, 0-dimensional, 1-dimensional, 2-dimensional, and 3-dimensional nanomaterial-based systems are comprehensively discussed for bacterial-based diagnostic and treatment applications. Since the use of these platforms as antibacterials is relatively new, this review will provide appropriate insight into their construction and applications. As such, we hope this review will inspire researchers to explore antibacterial-based nanomaterials with the aim of developing systems for clinical applications.
Collapse
Affiliation(s)
- Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Ying Shang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Kai-Cheng Yan
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA
| | - Hui-Qi Gan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK. and School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China.
| |
Collapse
|
17
|
Han HH, Tian H, Zang Y, Sedgwick AC, Li J, Sessler JL, He XP, James TD. Small-molecule fluorescence-based probes for interrogating major organ diseases. Chem Soc Rev 2021; 50:9391-9429. [PMID: 34232230 DOI: 10.1039/d0cs01183e] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chemical tools that allow the real-time monitoring of organ function and the visualisation of organ-related processes at the cellular level are of great importance in biological research. The upregulation/downregulation of specific biomarkers is often associated with the development of organ related diseases. Small-molecule fluorescent probes have the potential to create advances in our understanding of these disorders. Viable probes should be endowed with a number of key features that include high biomarker sensitivity, low limit of detection, fast response times and appropriate in vitro and in vivo biocompatibility. In this tutorial review, we discuss the development of probes that allow the targeting of organ related processes in vitro and in vivo. We highlight the design strategy that underlies the preparation of various promising probes, their optical response to key biomarkers, and proof-of-concept biological studies. The inherent drawbacks and limitations are discussed as are the current challenges and opportunities in the field. The hope is that this tutorial review will inspire the further development of small-molecule fluorescent probes that could aid the study of pathogenic conditions that contribute to organ-related diseases.
Collapse
Affiliation(s)
- Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hearn KN, Ashton TD, Acharya R, Feng Z, Gueven N, Pfeffer FM. Direct Amidation to Access 3-Amido-1,8-Naphthalimides Including Fluorescent Scriptaid Analogues as HDAC Inhibitors. Cells 2021; 10:1505. [PMID: 34203745 PMCID: PMC8232238 DOI: 10.3390/cells10061505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Methodology to access fluorescent 3-amido-1,8-naphthalimides using direct Buchwald-Hartwig amidation is described. The protocol was successfully used to couple a number of substrates (including an alkylamide, an arylamide, a lactam and a carbamate) to 3-bromo-1,8-naphthalimide in good yield. To further exemplify the approach, a set of scriptaid analogues with amide substituents at the 3-position were prepared. The new compounds were more potent than scriptaid at a number of histone deacetylase (HDAC) isoforms including HDAC6. Activity was further confirmed in a whole cell tubulin deacetylation assay where the inhibitors were more active than the established HDAC6 selective inhibitor Tubastatin. The optical properties of these new, highly active, compounds make them amenable to cellular imaging studies and theranostic applications.
Collapse
Affiliation(s)
- Kyle N. Hearn
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
- STEM College, RMIT University, Melbourne, VIC 3000, Australia;
| | - Trent D. Ashton
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Rameshwor Acharya
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia; (R.A.); (Z.F.); (N.G.)
| | - Zikai Feng
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia; (R.A.); (Z.F.); (N.G.)
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia; (R.A.); (Z.F.); (N.G.)
| | - Frederick M. Pfeffer
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
19
|
Fast-response fluorescent probe with favorable water solubility for highly sensitive imaging of endogenous tyrosinase in living cells and zebrafish model. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Sedgwick AC, Yan KC, Mangel DN, Shang Y, Steinbrueck A, Han HH, Brewster JT, Hu XL, Snelson DW, Lynch VM, Tian H, He XP, Sessler JL. Deferasirox (ExJade): An FDA-Approved AIEgen Platform with Unique Photophysical Properties. J Am Chem Soc 2021; 143:1278-1283. [PMID: 33428381 DOI: 10.1021/jacs.0c11641] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Deferasirox, ExJade, is an FDA-approved iron chelator used for the treatment of iron overload. In this work, we report several fluorescent deferasirox derivatives that display unique photophysical properties, i.e., aggregation-induced emission (AIE), excited state intramolecular proton transfer, charge transfer, and through-bond and through-space conjugation characteristics in aqueous media. Functionalization of the phenol units on the deferasirox scaffold afforded the fluorescent responsive pro-chelator ExPhos, which enabled the detection of the disease-based biomarker alkaline phosphatase (ALP). The diagnostic potential of these deferasirox derivatives was supported by bacterial biofilm studies.
Collapse
Affiliation(s)
- Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Kai-Cheng Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Daniel N Mangel
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Ying Shang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Axel Steinbrueck
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - James T Brewster
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Dylan W Snelson
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
21
|
Zhang C, Shi DT, Yan KC, Sedgwick AC, Chen GR, He XP, James TD, Ye B, Hu XL, Chen D. A glycoconjugate-based gold nanoparticle approach for the targeted treatment of Pseudomonas aeruginosa biofilms. NANOSCALE 2020; 12:23234-23240. [PMID: 33206087 DOI: 10.1039/d0nr05365a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, "core-shell" gold nanoparticles (AuNPs) have been functionalised using a simple one-pot approach to form fucose-based glycoconjugate AuNPs (Fuc-AuNPs) and galactose-based glycoconjugate AuNPs (Gal-AuNPs), respectively. Owing to the selective carbohydrate-based recognition of the key virulence factors of P. aeruginosa, LecB (fucose-specific lectin)/LecA (galactose-specific lectin), Fuc-AuNPs and Gal-AuNPs-based imaging and therapeutic strategies were evaluated towards P. aeruginosa. Both Fuc-AuNPs and Gal-AuNPs were non-covalently loaded with the fluorophore dicyanomethylene 4H-pyran (DCM) to afford two highly selective fluorescence imaging agents for the visualisation of P. aeruginosa. The loading of Fuc-AuNPs and Gal-AuNPs with the known antibiotic Ceftazidime (CAZ) exhibited an enhanced therapeutic effect, illustrating the significance of this targeted drug delivery strategy. Exploiting the phototherapeutic properties of AuNPs, photoirradiation (600 nm) of Fuc-AuNP@CAZ/Gal-AuNP@CAZ provided both photothermal and photodynamic therapeutic (PTT/PDT) effects, which facilitated the release of CAZ. Fuc-AuNP@CAZ and Gal-AuNP@CAZ were shown to be effective photo/chemotherapeutics resulting in almost complete eradication of P. aeruginosa biofilms formed on clinically relevant surfaces (glass slides and steel surface).
Collapse
Affiliation(s)
- Chao Zhang
- Emergency Department, Jinan Children's Hospital, No. 23976 Jingshi Road, Jinan City, Shandong Province, Jinan, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang Z, Sun G, Chen W, Su J, Tian H. The endeavor of vibration-induced emission (VIE) for dynamic emissions. Chem Sci 2020; 11:7525-7537. [PMID: 32874525 PMCID: PMC7448294 DOI: 10.1039/d0sc01591a] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
Organic chromophores with large Stokes shifts and dual emissions are fascinating because of their fundamental and applied interest. Vibration-induced emission (VIE) refers to a tunable multiple fluorescence exhibited by saddle-shaped N,N'-disubstituted-dihydribenzo[a,c]phenazines (DHPs), which involves photo-induced configuration vibrations from bent to planar form along the N-N axis. VIE-active molecules show intrinsic long-wavelength emissions in the unconstrained state (planar state) but bright short-wavelength emissions in the constrained state (bent state). The emission response for VIE-active luminogens is highly sensitive to steric hindrance encountered during the planarization process such that a tiny structural variation can induce an evident change in fluorescence. This can often be achieved by tuning the intensity ratio of short- and long-wavelength bands. In some special cases, the alterations in the emission wavelength of VIE fluorophores can be achieved step by step by harnessing the degree of bending angle motion in the excited state. In this perspective, we summarize the latest progress in the field of VIE research. New bent heterocyclic structures, as novel types of VIE molecules, are being developed, and the general features of the chemical structures are also being proposed. Technologically, novel emission color-tuning approaches and VIE-based probes for visualizing biological activity are presented to demonstrate how the dynamic VIE effect can be exploited for cutting-edge applications.
Collapse
Affiliation(s)
- Zhiyun Zhang
- Key Laboratory for Advanced Materials , Feringa Nobel Prize Scientist Joint Research Center , Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science & Technology , 130 Meilong Road , Shanghai , 200237 , China .
| | - Guangchen Sun
- Key Laboratory for Advanced Materials , Feringa Nobel Prize Scientist Joint Research Center , Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science & Technology , 130 Meilong Road , Shanghai , 200237 , China .
| | - Wei Chen
- Key Laboratory for Advanced Materials , Feringa Nobel Prize Scientist Joint Research Center , Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science & Technology , 130 Meilong Road , Shanghai , 200237 , China .
| | - Jianhua Su
- Key Laboratory for Advanced Materials , Feringa Nobel Prize Scientist Joint Research Center , Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science & Technology , 130 Meilong Road , Shanghai , 200237 , China .
| | - He Tian
- Key Laboratory for Advanced Materials , Feringa Nobel Prize Scientist Joint Research Center , Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science & Technology , 130 Meilong Road , Shanghai , 200237 , China .
| |
Collapse
|