1
|
Main D, Hird TM, Gao S, Walmsley IA, Ledingham PM. Room temperature atomic frequency comb storage for light. OPTICS LETTERS 2021; 46:2960-2963. [PMID: 34129584 DOI: 10.1364/ol.426753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
We demonstrate coherent storage and retrieval of pulsed light using the atomic frequency comb protocol in a room temperature alkali vapor. We utilize velocity-selective optical pumping to prepare multiple velocity classes in the F=4 hyperfine ground state of cesium. The frequency spacing of the classes is chosen to coincide with the F'=4-F'=5 hyperfine splitting of the 62P3/2 excited state, resulting in a broadband periodic absorbing structure consisting of two usually Doppler-broadened optical transitions. Weak coherent states of duration 2ns are mapped into this atomic frequency comb with pre-programmed recall times of 8ns and 12ns, with multi-temporal mode storage and recall demonstrated. Utilizing two transitions in the comb leads to an additional interference effect upon rephasing that enhances the recall efficiency.
Collapse
|
2
|
Nicolle M, Becker JN, Weinzetl C, Walmsley IA, Ledingham PM. Gigahertz-bandwidth optical memory in Pr 3+:Y 2SiO 5. OPTICS LETTERS 2021; 46:2948-2951. [PMID: 34129581 DOI: 10.1364/ol.423642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
We experimentally study a broadband implementation of the atomic frequency comb (AFC) rephasing protocol with a cryogenically cooled Pr3+:Y2SiO5 crystal. To allow for storage of broadband pulses, we explore a novel, to the best of our knowledge, regime where the input photonic bandwidth closely matches the inhomogeneous broadening of the material (∼5GHz), thereby significantly exceeding the hyperfine ground and excited state splitting (∼10MHz). Through an investigation of different AFC preparation parameters, we measure a maximum efficiency of 10% after a rephasing time of 12.5 ns. With a suboptimal AFC, we witness up to 12 rephased temporal modes.
Collapse
|
3
|
Gong B, Tu T, Zhu XY, Guo AL, Zhou ZQ, Guo GC, Li CF. A noise-resisted scheme of dynamical decoupling pulses for quantum memories. Sci Rep 2020; 10:15089. [PMID: 32934301 PMCID: PMC7494898 DOI: 10.1038/s41598-020-72071-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/25/2020] [Indexed: 11/30/2022] Open
Abstract
Stable quantum memories that capable of storing quantum information for long time scales are an essential building block for an array of potential applications. The long memory time are usually achieved via dynamical decoupling technique involving decoupling of the memory states from its local environment. However, because this process is strongly limited by the errors in the pulses, an noise-protected scheme remains challenging in the field of quantum memories. Here we propose a scheme to design a noise-resisted [Formula: see text] pulse, which features high fidelity exceeding [Formula: see text] under realistic situations. Using this [Formula: see text] pulse we can generate different dynamical decoupling sequences that preserve high fidelity for long time scales. The versatility, robustness, and potential scalability of this method may allow for various applications in quantum memories technology.
Collapse
Affiliation(s)
- Bo Gong
- Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, 230026, People's Republic of China.
| | - Tao Tu
- Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, 230026, People's Republic of China.
- Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| | - Xing-Yu Zhu
- Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, 230026, People's Republic of China
- Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Ao-Lin Guo
- Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, 230026, People's Republic of China
- Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Zong-Quan Zhou
- Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, 230026, People's Republic of China
| | - Guang-Can Guo
- Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, 230026, People's Republic of China
| | - Chuan-Feng Li
- Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, 230026, People's Republic of China
| |
Collapse
|