1
|
Li X, Wan S, Dong T, Zhao Z, Wang R. Determination of operation parameters for magnesium-air fuel cell to recover nitrogen and phosphorus from wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121344. [PMID: 38909572 DOI: 10.1016/j.jenvman.2024.121344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024]
Abstract
Recovering phosphorus (P) and nitrogen (N) from wastewater not only contributes to environmental protection but also aligns with sustainable development goals. This study employed a magnesium-air fuel cell (Mg-O2-FC) to extract P and N from wastewater in the form of struvite (MgNH4·6H2O), based on the removal efficiency of ammonia and phosphate, electricity generation capacity and struvite purity to determine the optimal operation parameters. These parameters included hydraulic retention time (HRT), service life of magnesium sheet, and precipitation discharge frequency. The results showed that the removal efficiency of ammonia from 0 to 4h was 55.99%, and that from 4 to 12h was only 15.74%. The phosphate removal efficiency in the initial cycle was 97.68% but decreased to 63.25% after 24h. The phosphate removal rate in 2 min increased by 145% when the precipitation discharge frequency increased from 4 h/time to 24 h/time. Consequently, the HRT, service life of the magnesium sheet, and precipitation discharge frequency were selected as 4 h, 24 h, and 24 h/time. These optimized conditions provide valuable insights for the practical implementation of Mg-O2-FC in recovering N and P from wastewater.
Collapse
Affiliation(s)
- Xingze Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE. Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China.
| | - Sizhuo Wan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE. Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China.
| | - Tingting Dong
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE. Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China.
| | - Zhiguo Zhao
- China National Heavy Machinery Research Institute Co., Ltd., Xi'an, 710014, PR China.
| | - Ru Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE. Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China.
| |
Collapse
|
2
|
Yan S, Feng Y, Lin J, Wang Y. Metal-Redox Bicatalysis Batteries for Energy Storage and Chemical Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212078. [PMID: 36841953 DOI: 10.1002/adma.202212078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Indexed: 06/18/2023]
Abstract
New types of electrochemical energy conversion and storage devices based on redox electrocatalytic reactions possess great potential in renewable energy to maximize energy utilization and balance environmental issues. The typical device is the metal-redox bicatalysis battery, where the cathode is redox bifunctional catalyst (named as redox bicatalyst) with gas, solid, liquid as active reactants while anode is metal, driven by cathodic redox electrocatalytic reactions during charge/discharge processes, which promotes the energy storage and chemical production. In this system, the metal anode, redox-bicatalyst cathode, electrolytes, and the redox electrochemical reactions can be modified and adjusted to achieve the optimal energy conversion and utilization. Therefore, the deep understanding of the electrochemical system is conducive to designing new devices to meet the demand among various applications, including energy storage and conversion. In this review, the authors clarify the fundamentals and design principles of the rechargeable/reversible metal-redox bicatalysis batteries and how each part affects the devices in energy conversion and chemical production. The authors summarize the electrocatalytic reduction/oxidation reactions, the reported systems relied on redox reactions, and the corresponding redox bicatalysts. Finally, a perspective of the key challenges and the possible new types of metal-redox bicatalysis batteries for efficient energy utilization and chemical production are given.
Collapse
Affiliation(s)
- Shichen Yan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, YangQiao West Road 155#, Fuzhou, Fujian, 350002, P. R. China
| | - Yangyang Feng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, YangQiao West Road 155#, Fuzhou, Fujian, 350002, P. R. China
| | - Jing Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, YangQiao West Road 155#, Fuzhou, Fujian, 350002, P. R. China
| | - Yaobing Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, YangQiao West Road 155#, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
3
|
Song LN, Zheng LJ, Wang XX, Wang YF, Wang Y, Liang S, Xu JJ. Unraveling the Mechanism of Field-Induced Li + Concentration for Improved Kinetics in Rechargeable Li-CO 2 Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52907-52917. [PMID: 36378151 DOI: 10.1021/acsami.2c15897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The design of highly efficient electrocatalysts is a promising strategy to improve the electrochemical kinetics of Li-CO2 batteries. However, electrocatalysts usually aim to reduce the energetic barrier for the corresponding electrochemical reactions; little attention has been given to modulating the kinetics that directly determine the local concentration of reaction molecules surrounding catalysts. Herein, we present a systematic study on the role of Li+ reunion on the improvement of reaction kinetics in Li-CO2 batteries with a Cu cone cathode. Specifically, this local, geometry-driven tip effect can enrich the local electron concentration to facilitate Li+ ions diffusion from the bulk electrolyte to the surface of catalyst, leading to boosted catalytic performance. Further studies demonstrate that Cu(II/I) as a solid redox mediator dominates the reversible bulk redox reactions in a Cu cone cathode, which acts as an electron-hole transfer agent and permits the efficient reduction and oxidation of solid Li2CO3, contributing to an accessible theoretical discharge voltage, low charge potential below 3.2 V, impressive rate capability, and a long cycling stability (333 days) for Li-CO2 batteries. The exploitation of the sharp-tip enhancement effect and dynamic creation of catalytic active sites is expected to become routine practice in future mechanistic studies for metal-air batteries.
Collapse
Affiliation(s)
- Li-Na Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, P. R. China
| | - Li-Jun Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, P. R. China
| | - Xiao-Xue Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, P. R. China
- International Center of Future Science, Jilin University, Changchun130012, P. R. China
| | - Yi-Feng Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, P. R. China
| | - Yue Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, P. R. China
| | - Shuang Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, P. R. China
| | - Ji-Jing Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, P. R. China
- International Center of Future Science, Jilin University, Changchun130012, P. R. China
| |
Collapse
|
4
|
Yan W, Ma L, Xu J, Guo Y, Hu H, Zhi C, Ho D. Battery-Sensor Hybrid: A New Gas Sensing Paradigm with Complete Energy Self-Sufficiency. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46507-46517. [PMID: 34569776 DOI: 10.1021/acsami.1c09255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fully autonomous operation has long been an ultimate goal in environmental sensing. Although self-powered gas sensors based on energy harvesting have been widely reported to provide power for autonomous operation, these sensors rely on external sources of harvestable energy, thus are not completely self-sufficient. Herein, a battery-sensor hybrid device that can simultaneously function as both a power source and a gas sensor is presented. The battery-sensor consists of a cathode that reduces NO2 to NO2- via a catalyst with Fe-Nx species distributed on highly graphitic porous nitrogen-doped carbon. On the basis of the efficient and selective electrocatalytic activity of the catalyst, the battery-sensor is capable of sensing NO2 and does so without any external power, overcoming the long-standing grand challenge to achieve complete energy self-sufficiency. Furthermore, through controlling the working current the sensing range can be significantly expanded and electronically tuned, which is not only unprecedented for gas sensors but also of remarkable commercial practicality. The proposed battery-sensor hybrid architecture represents a new paradigm toward sensors with complete energy self-sufficiency.
Collapse
Affiliation(s)
- Wenhao Yan
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P.R. China
| | - Longtao Ma
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P.R. China
| | - Jiangang Xu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P.R. China
| | - Ying Guo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P.R. China
| | - Haibo Hu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P.R. China
- School of Physics and Materials Science, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P.R. China
| | - Derek Ho
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P.R. China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong Science Park, Hong Kong SAR, 999077, China
| |
Collapse
|