1
|
Yang R, Sun K, Mao Q, Wang W, Deng K, Wang J, Yu H, Wang L, Wang H. Proton Ionic Liquid Modulates Hydrogen Coverage and Subsurface Absorbed Hydrogen to Enhance Pd Metallene Electrocatalytic Semi-hydrogenation of Alkynols. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407446. [PMID: 39422370 DOI: 10.1002/smll.202407446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Electrochemical semi-hydrogenation of alkynols to produce high-value alkenols is a green and sustainable approach. Although Pd can exhibit excellent semi-hydrogenation properties, its intrinsic mechanism still lacks in-depth study. Herein, a proton ionic liquid (PIL)-modified Pd metallene (Pdene@PIL) is synthesized for the electrocatalytic semi-hydrogenation of 2-methyl-3-butyn-2-ol (MBY) to 2-methyl-3-buten-2-ol (MBE). The PIL modification of Pdene@PIL resulted in an MBY conversion of 96.1% and MBE selectivity of 97.2%, respectively. Theoretical calculations indicate the electron transfer between Pdene and PIL, leading to easier adsorption of MBY on the Pd surface. The d-band center of Pdene@PIL shifts away from the Fermi level, which weakens the adsorption of over-hydrogenated intermediates. At the same time, the PIL modification facilitates the adsorption of surface-adsorbed hydrogen (H*ads) and inhibits the formation of subsurface-absorbed hydrogen (H*abs). In particular, the PIL modification optimizes Hads* coverage, reduces the reaction energy of the rate-determining step (C5H8O*-C5H9O*), and inhibits HER. The reduction of H*abs formation inhibits the transfer of Pd to PdHx and suppresses the over-hydrogenation. This work provides new insights into the modulation of H* to enhance the alkynol electrocatalytic semi-hydrogenation reaction (ESHR) process from the perspective of surface modification.
Collapse
Affiliation(s)
- Ruidong Yang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Kuo Sun
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Qiqi Mao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Wenxin Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Jianguo Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| |
Collapse
|
2
|
Ying Z, Qiao L, Liu B, Gao L, Zhang P. Development of a microfluidic wearable electrochemical sensor for the non-invasive monitoring of oxidative stress biomarkers in human sweat. Biosens Bioelectron 2024; 261:116502. [PMID: 38896980 DOI: 10.1016/j.bios.2024.116502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/09/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Oxidative stress is widely recognized as a pivotal factor contributing to numerous Central Nervous System (CNS) ailments. The concentrations of hydrogen peroxide (H2O2) and phosphorylated proteins within the human body serve as crucial indicators of oxidative stress. As such, the real-time monitoring of H2O2 and phosphorylated proteins in sweat is vital for the early identification, diagnosis, and management of diseases linked to oxidative stress. In this context, we present a novel microfluidic wearable electrochemical sensor by modifying the electrode with Prussian blue (PB) and loading sulfur-rich vacancy-containing molybdenum disulfide (MoS2-X) onto Multi-walled carbon nanotube (CNTs) to form coaxially layered CNTs/MoS2-X, which was then synthesized with highly dispersed titanium dioxide nanoparticles (TiO2) to synthesize CNTs/MoS2-X/TiO2 composites for the detection of human sweat H2O2 and phosphorylated proteins, respectively. This structure, with its sulfur vacancies and coaxial layering, significantly improved sensitivity of electrochemical sensors, allowing it to detect H2O2 in a range of 0.01-1 mM with a detection limit of 4.80 μM, and phosphoproteins in a range of 0.01-1 mg/mL with a threshold of 0.917 μg/mL. Furthermore, the miniature sensor demonstrates outstanding performance in detecting analytes in both simulated and real sweat. Comprehensive biosafety assessments have validated the compatibility of the electrode material, underscoring the potential of sensor as a reliable and non-invasive method for tracking biomarkers linked to CNS disorders. This microfluidic wearable electrochemical biosensor with high performance and biosafety features shows great promise for the development of cutting-edge wearable technology devices for tracking CNS disease indicators.
Collapse
Affiliation(s)
- Zhiye Ying
- School of Mechanical Engineering, Qinghai University, Xining, 810016, PR China
| | - Lijuan Qiao
- Research Center of Basic Medical Science, Medical College, Qinghai University, Xining, 810016, PR China
| | - Bingxin Liu
- School of Mechanical Engineering, Qinghai University, Xining, 810016, PR China; Salt Lake Chemical Engineering Research Complex, Qinghai Provincial Key Laboratory of Salt Lake Materials Chemical Engineering, Qinghai University, Xining, 810016, PR China.
| | - Li Gao
- School of Mechanical Engineering, Qinghai University, Xining, 810016, PR China; Salt Lake Chemical Engineering Research Complex, Qinghai Provincial Key Laboratory of Salt Lake Materials Chemical Engineering, Qinghai University, Xining, 810016, PR China.
| | - Peng Zhang
- School of Mechanical Engineering, Qinghai University, Xining, 810016, PR China
| |
Collapse
|
3
|
Zhu S, Wang ZJ, Chen Y, Lu T, Li J, Wang J, Jin H, Lv JJ, Wang X, Wang S. Recent Progress Toward Electrocatalytic Conversion of Nitrobenzene. SMALL METHODS 2024; 8:e2301307. [PMID: 38088567 DOI: 10.1002/smtd.202301307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/04/2023] [Indexed: 08/18/2024]
Abstract
Despite that extensive efforts have been dedicated to the search for advanced catalysts to boost the electrocatalytic nitrobenzene reduction reaction (eNBRR), its progress is severely hampered by the limited understanding of the relationship between catalyst structure and its catalytic performance. Herein, this review aims to bridge such a gap by first analyzing the eNBRR pathway to present the main influential factors, such as electrolyte feature, applied potential, and catalyst structure. Then, the recent advancements in catalyst design for eNBRR are comprehensively summarized, particularly about the impacts of chemical composition, morphology, and crystal facets on regulating the local microenvironment, electron and mass transport for boosting catalytic performance. Finally, the future research of eNBRR is also proposed from the perspectives of performance enhancement, expansion of product scope, in-depth understanding of the reaction mechanism, and acceleration of the industrialization process through the integration of upstream and downstream technologies.
Collapse
Affiliation(s)
- Shaojun Zhu
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Zheng-Jun Wang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Yihuang Chen
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Tianrui Lu
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Jun Li
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Jichang Wang
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, N9B3P4, Canada
| | - Huile Jin
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Jing-Jing Lv
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Xin Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Shun Wang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
4
|
Zhang W, Ge W, Qi Y, Sheng X, Jiang H, Li C. Surfactant Directionally Assembled at the Electrode-Electrolyte Interface for Facilitating Electrocatalytic Aldehyde Hydrogenation. Angew Chem Int Ed Engl 2024; 63:e202407121. [PMID: 38775229 DOI: 10.1002/anie.202407121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Indexed: 07/02/2024]
Abstract
Electrocatalytic hydrogenation of unsaturated aldehydes to unsaturated alcohols is a promising alternative to conventional thermal processes. Both the catalyst and electrolyte deeply impact the performance. Designing the electrode-electrolyte interface remains challenging due to its compositional and structural complexity. Here, we employ the electrocatalytic hydrogenation of 5-hydroxymethylfurfural (HMF) as a reaction model. The typical cationic surfactant, cetyltrimethylammonium bromide (CTAB), and its analogs are employed as electrolyte additives to tune the interfacial microenvironment, delivering high-efficiency hydrogenation of HMF and inhibition of the hydrogen evolution reaction (HER). The surfactants experience a conformational transformation from stochastic distribution to directional assembly under applied potential. This oriented arrangement hampers the transfer of water molecules to the interface and promotes the enrichment of reactants. In addition, near 100 % 2,5-bis(hydroxymethyl)furan (BHMF) selectivity is achieved, and the faradaic efficiency (FE) of the BHMF is improved from 61 % to 74 % at -100 mA cm-2. Notably, the microenvironmental modulation strategy applies to a range of electrocatalytic hydrogenation reactions involving aldehyde substrates. This work paves the way for engineering advanced electrode-electrolyte interfaces and boosting unsaturated alcohol electrosynthesis efficiency.
Collapse
Affiliation(s)
- Wenfei Zhang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wangxin Ge
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanbin Qi
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuedi Sheng
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hongliang Jiang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunzhong Li
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
5
|
Yan T, Jia Y, Hou K, Gui Z, Zhang W, Du K, Pan D, Li H, Shi Y, Qi L, Gao Q, Zhang Y, Tang Y. Highly efficient hydrodesulfurization driven by an in-situ reconstruction of ammonium/amine intercalated MoS 2 catalysts. iScience 2024; 27:109824. [PMID: 38779484 PMCID: PMC11109011 DOI: 10.1016/j.isci.2024.109824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/11/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Hydrodesulfurization (HDS) is a commonly used route for producing clean fuels in modern refinery. Herein, ammonium/amine-intercalated MoS2 catalysts with various content of 1T phase and S vacancies have been successfully synthesized. Along with the increment of 1T phase and S vacancies of MoS2, the initial reaction rate of the HDS of dibenzothiophene (DBT) can be improved from 0.09 to 0.55 μmol·gcat-1·s-1, accounting for a remarkable activity compared to the-state-of-the-art catalysts. In a combinatory study via the activity evaluation and catalysts characterization, we found that the intercalation species of MoS2 played a key role in generating more 1T phase and S vacancies through the 'intercalation-deintercalation' processes, and the hydrogenation and desulfurization of HDS can be significantly promoted by 1T phase and S vacancies on MoS2, respectively. This study provides a practically meaningful guidance for developing more advanced HDS catalysts by the intercalated MoS2-derived materials with an in-depth understanding of structure-function relationships.
Collapse
Affiliation(s)
- Tianlan Yan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
| | - Yingshuai Jia
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
| | - Kaige Hou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
| | - Zhuxin Gui
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
| | - Wenbiao Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
- College of Chemistry and Materials Science, and, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P.R. China
| | - Ke Du
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
| | - Di Pan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
| | - He Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
| | - Yanghao Shi
- College of Chemistry and Materials Science, and, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P.R. China
| | - Lu Qi
- School of Petrochemical Engineering, and, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
| | - Qingsheng Gao
- College of Chemistry and Materials Science, and, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P.R. China
| | - Yahong Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
| | - Yi Tang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
6
|
Wu T, Meng H. Introducing phosphorus atoms into MoS 2 nanosheets through a vapor-phase hydrothermal process for the hydrogen evolution reaction. Dalton Trans 2024; 53:5808-5815. [PMID: 38451157 DOI: 10.1039/d4dt00272e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Molybdenum disulfide (MoS2)-based electrocatalysts have been considered as promising alternatives to platinum for use in the hydrogen evolution reaction (HER). Developing MoS2 electrocatalysts with more active sites has been recognized as an efficient way to enhance the HER activity. Moreover, phase transition and heteroatom doping show great influence on the HER performance. In this work, we develop a vapor-phase hydrothermal (VPH) approach to introduce phosphorus (P) atoms into a MoS2 nanosheet array on carbon fiber cloth, which presents enhanced HER activity compared with MoS2 without P-doping. The improved performance is due to the synergistic effects of the new active sites formed by the P dopants and the sulfur (S) vacancies in the MoS2 nanosheets generated by the doping of P atoms, which increases the number of active sites. In general, the obtained P-doped MoS2/CFC exhibits a lower onset potential of 80 mV and an overpotential of 162 mV at 10 mA cm-2 than MoS2 without P-doping in 0.5 M H2SO4, accompanied by extremely large cathodic current density and excellent stability. This strategy may open up opportunities for heteroatom doping of electrocatalysts for various applications and provide a new method for material synthesis.
Collapse
Affiliation(s)
- Tianxing Wu
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China.
- Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, P. R. China
| | - Hanqi Meng
- Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, P. R. China
| |
Collapse
|
7
|
Zhang W, Zhang W, Yu K, Tan J, Tang Y, Gao Q. Synergistic enhancement of electrocatalytic nitroarene hydrogenation over Mo 2C@MoS 2 heteronanorods with dual active-sites. Chem Sci 2024; 15:3446-3452. [PMID: 38455027 PMCID: PMC10915856 DOI: 10.1039/d3sc06010a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Electrocatalytic hydrogenation (ECH) enables the sustainable production of chemicals under ambient conditions, in which catalysts catering for the different chemisorption of reactants/intermediates are desired but still challenging. Here, Mo2C@MoS2 heteronanorods with dual active-sites are developed to accomplish efficient nitroarene ECH according to our theoretical prediction that the binding of atomic H and nitro substrates would be synergistically strengthened on Mo2C-MoS2 interfaces. They afford high faradaic efficiency (>85%), yield (>78%) and selectivity (>99%) for the reduction of 4-nitrostyrene (4-NS) to 4-vinylaniline (4-VA) in neutral electrolytes, outperforming not only the single-component counterparts of Mo2C nanorods and MoS2 nanosheets, but also recently reported noble-metals. Accordingly, in situ Raman spectroscopy combined with electrochemical tests clarifies the rapid ECH of 4-NS on Mo2C-MoS2 interfaces due to the facilitated elementary steps, quickly refreshing active sites for continuous electrocatalysis. Mo2C@MoS2 further confirms efficient and selective ECH toward functional anilines with other well-retained reducible groups in wide substrate scope, underscoring the promise of dual-site engineering for exploring catalysts.
Collapse
Affiliation(s)
- Wanling Zhang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Wenbiao Zhang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University Shanghai 200433 P. R. China
| | - Kun Yu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Jingwen Tan
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| | - Yi Tang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University Shanghai 200433 P. R. China
| | - Qingsheng Gao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632 P. R. China
| |
Collapse
|
8
|
Chen B, Sui S, He F, He C, Cheng HM, Qiao SZ, Hu W, Zhao N. Interfacial engineering of transition metal dichalcogenide/carbon heterostructures for electrochemical energy applications. Chem Soc Rev 2023; 52:7802-7847. [PMID: 37869994 DOI: 10.1039/d3cs00445g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
To support the global goal of carbon neutrality, numerous efforts have been devoted to the advancement of electrochemical energy conversion (EEC) and electrochemical energy storage (EES) technologies. For these technologies, transition metal dichalcogenide/carbon (TMDC/C) heterostructures have emerged as promising candidates for both electrode materials and electrocatalysts over the past decade, due to their complementary advantages. It is worth noting that interfacial properties play a crucial role in establishing the overall electrochemical characteristics of TMDC/C heterostructures. However, despite the significant scientific contribution in this area, a systematic understanding of TMDC/C heterostructures' interfacial engineering is currently lacking. This literature review aims to focus on three types of interfacial engineering, namely interfacial orientation engineering, interfacial stacking engineering, and interfacial doping engineering, of TMDC/C heterostructures for their potential applications in EES and EEC devices. To accomplish this goal, a combination of experimental and theoretical approaches was used to allow the analysis and summary of the fundamental electrochemical properties and preparation strategies of TMDC/C heterostructures. Moreover, this review highlights the design and utilization of the interfacial engineering of TMDC/C heterostructures for specific EES and EEC devices. Finally, the challenges and opportunities of using interfacial engineering of TMDC/C heterostructures in practical EES and EEC devices are outlined. We expect that this review will effectively guide readers in their understanding, design, and application of interfacial engineering of TMDC/C heterostructures.
Collapse
Affiliation(s)
- Biao Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
| | - Simi Sui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Fang He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
| | - Chunnian He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, People's Republic of China
| | - Hui-Ming Cheng
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, People's Republic of China
| | - Shi-Zhang Qiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, People's Republic of China
| | - Naiqin Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, People's Republic of China.
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, People's Republic of China
| |
Collapse
|
9
|
Kleinhaus JT, Wolf J, Pellumbi K, Wickert L, Viswanathan SC, Junge Puring K, Siegmund D, Apfel UP. Developing electrochemical hydrogenation towards industrial application. Chem Soc Rev 2023; 52:7305-7332. [PMID: 37814786 DOI: 10.1039/d3cs00419h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Electrochemical hydrogenation reactions gained significant attention as a sustainable and efficient alternative to conventional thermocatalytic hydrogenations. This tutorial review provides a comprehensive overview of the basic principles, the practical application, and recent advances of electrochemical hydrogenation reactions, with a particular emphasis on the translation of these reactions from lab-scale to industrial applications. Giving an overview on the vast amount of conceivable organic substrates and tested catalysts, we highlight the challenges associated with upscaling electrochemical hydrogenations, such as mass transfer limitations and reactor design. Strategies and techniques for addressing these challenges are discussed, including the development of novel catalysts and the implementation of scalable and innovative cell concepts. We furthermore present an outlook on current challenges, future prospects, and research directions for achieving widespread industrial implementation of electrochemical hydrogenation reactions. This work aims to provide beginners as well as experienced electrochemists with a starting point into the potential future transformation of electrochemical hydrogenations from a laboratory curiosity to a viable technology for sustainable chemical synthesis on an industrial scale.
Collapse
Affiliation(s)
- Julian T Kleinhaus
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
| | - Jonas Wolf
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Kevinjeorjios Pellumbi
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Leon Wickert
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Sangita C Viswanathan
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Kai Junge Puring
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Daniel Siegmund
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| |
Collapse
|
10
|
Zhang Z, Huang K, Qiu X, Ge W, Yang X, Zhu Y, Lian C, Liu H, Jiang H, Li C. Operando generated copper-based catalyst enabling efficient electrosynthesis of 2,5-bis(hydroxymethyl)furan. FUNDAMENTAL RESEARCH 2023; 3:763-769. [PMID: 38933290 PMCID: PMC11197742 DOI: 10.1016/j.fmre.2022.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/06/2022] [Accepted: 01/16/2022] [Indexed: 11/27/2022] Open
Abstract
Electrocatalytic upgrading of biomass-derived platform molecules has emerged as a sustainable and environmentally benign route to produce high-value chemicals. The main challenge lies in developing efficient catalysts for the selective activation of designated chemical bonds in the presence of various reducible groups. This work demonstrated a high-efficiency electrochemical conversion of 5-hydroxymethylfurfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF), an important industrial synthetic reagent. A highly porous Cu-based catalyst was developed that achieved nearly 100% BHMF selectivity and long-term stability. Through comprehensive operando and ex-situ structural characterizations, an electrochemically generated catalyst with abundant Cu/Cu2O interfaces was identified as a catalytically active phase for HMF conversion. Deuterated BHMF, with the potential to produce deuterated drugs, was also synthesized using D2O as the deuterium source. Density functional theory calculations show that the Cu/Cu2O interface structure exhibits relatively low energy barriers for the hydrogenation of HMF to BHMF. This work provides insights into the origin of electrocatalytic hydrogenation activity and highlights the promising potential of the electrocatalytic synthesis of high-value chemicals.
Collapse
Affiliation(s)
- Zhaolu Zhang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kai Huang
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyue Qiu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wangxin Ge
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoling Yang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yihua Zhu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hongliang Jiang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunzhong Li
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
11
|
Sun Z, Liang J, Liu K, Feng X, Wu Y, Zhao Y, Liang Q, Wu J, Li H, Zhai T. Building intercalation structure for high ionic conductivity via aliovalent substitution. Sci Bull (Beijing) 2023; 68:1134-1142. [PMID: 37211492 DOI: 10.1016/j.scib.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/08/2023] [Accepted: 05/06/2023] [Indexed: 05/23/2023]
Abstract
Two-dimensional (2D) materials, which possess robust nanochannels, high flux and allow scalable fabrication, provide new platforms for nanofluids. Highly efficient ionic conductivity can facilitate the application of nanofluidic devices for modern energy conversion and ionic sieving. Herein, we propose a novel strategy of building an intercalation crystal structure with negative surface charge and mobile interlamellar ions via aliovalent substitution to boost ionic conductivity. The Li2xM1-xPS3 (M = Cd, Ni, Fe) crystals obtained by the solid-state reaction exhibit distinct capability of water absorption and apparant variation of interlayer spacing (from 0.67 to 1.20 nm). The assembled membranes show the ultrahigh ionic conductivity of 1.20 S/cm for Li0.5Cd0.75PS3 and 1.01 S/cm for Li0.6Ni0.7PS3. This facile strategy may inspire the research in other 2D materials with higher ionic transport performance for nanofluids.
Collapse
Affiliation(s)
- Zongdong Sun
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianing Liang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kailang Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Feng
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Wu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yinghe Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qi Liang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Nanostructure Research Center, Wuhan University of Technology, Wuhan 430070, China
| | - Jinsong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Nanostructure Research Center, Wuhan University of Technology, Wuhan 430070, China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
12
|
Zhang X, Chen B, Wang J, Zhou Y, Huang X, Huang H, Wang X, Li K. Review of Molybdenum Disulfide Research in Slurry Bed Heavy Oil Hydrogenation. ACS OMEGA 2023; 8:18400-18407. [PMID: 37273628 PMCID: PMC10233841 DOI: 10.1021/acsomega.3c02029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023]
Abstract
With the growing demand for gasoline and diesel fuel and the shortage of conventional oil reserves, there has been extensive interest in upgrading technologies for unconventional feedstocks such as heavy oil. Slurry bed reactors with high tolerance to heavy oil have been extensively investigated. Among them, dispersive MoS2 is favored for its excellent hydrogenation ability for heavy oil even under harsh reaction conditions such as high pressure and high temperature, its ability to effectively prevent damage to equipment from deposited coke, and its ability to meet the requirement of high catalyst dispersion for slurry bed reactors. This paper reviews the relationship between the structure and hydrogenation effectiveness of dispersive molybdenum disulfide, the hydrogenation mechanism, and the improvement of its hydrogenation performance by adding defects and compares the application of molybdenum disulfide in heavy oil hydrogenation, desulfurization, deoxygenation, and denitrification. It is found that the current research on dispersive molybdenum disulfide catalysts focuses mostly on the reduction of stacking layers and catalytic performance, and there is a lack of research on the lateral dimensions, microdomain regions, and defect sites of MoS2 catalysts. The relationship between catalyst structure and hydrogenation effect also lags far behind the application of MoS2 in the precipitation of hydrogen, etc. Oil-soluble and water-soluble MoS2 catalysts eventually need to be converted to a solid sulfide state to have hydrogenation activity. The conversion history of soluble catalysts to solid-type catalysts and the key to their improved catalytic effectiveness remain unclear.
Collapse
Affiliation(s)
- Xiaoning Zhang
- School
of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, People’s
Republic of China
| | - Buning Chen
- Xinjiang
Xuanli Environmental Energy Co., Hami 839300, People’s Republic of China
| | - Jianwei Wang
- Xinjiang
Xuanli Environmental Energy Co., Hami 839300, People’s Republic of China
| | - Yusheng Zhou
- Xinjiang
Xuanli Environmental Energy Co., Hami 839300, People’s Republic of China
| | - Xueli Huang
- School
of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, People’s
Republic of China
| | - He Huang
- School
of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, People’s
Republic of China
| | - Xuefeng Wang
- School
of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, People’s
Republic of China
| | - Kaihong Li
- Sinopec
Karamay Petrochemical Co. Ltd., Karamay 834000, People’s Republic of China
| |
Collapse
|
13
|
Zheng Y, Wang Z, Chen P, Zhang W, Gao Q. Roughness-Dependent Electro-Reductive Coupling of Nitrobenzenes and Aldehydes on Copper Electrodes. CHEMSUSCHEM 2023:e202300180. [PMID: 36988187 DOI: 10.1002/cssc.202300180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 05/28/2023]
Abstract
The electro-reductive coupling of nitro and carbonyl compounds enables a facile, environmentally friendly and energy benign transformation toward value-added nitrones or imines, but the selectivity is still challenging. Here, the surface roughness of Cu electrodes is introduced for the first time as the determinant to switch products from nitrones to imines owing to the controllable reduction of nitroarenes to hydroxylamines or amines on tailored CuI /Cu0 interfaces. The roughness-dependent selectivity, that is the decrease of nitrones and the increase of imines with enhanced roughness, is visible in the electro-reductive coupling of nitrobenzene and furfural. Thus, the high selectivity of nitrone (98 %) and imine (80 %) can be achieved on a surface smooth Cu foil and the one electrochemically roughened in the presence of I- , respectively. Such roughness-dependence of nitrone/imine selectivity on Cu electrodes is further verified in a wide substrate scope, highlighting the promise of surface/interfacial engineering for electrochemical synthesis.
Collapse
Affiliation(s)
- Yinjian Zheng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, No. 601, Huangpu Avenue West, Guangzhou, 510632, P. R. China
| | - Zhiyuan Wang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, No. 601, Huangpu Avenue West, Guangzhou, 510632, P. R. China
| | - Peng Chen
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, No. 601, Huangpu Avenue West, Guangzhou, 510632, P. R. China
| | - Wenbiao Zhang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, No. 601, Huangpu Avenue West, Guangzhou, 510632, P. R. China
| | - Qingsheng Gao
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, No. 601, Huangpu Avenue West, Guangzhou, 510632, P. R. China
| |
Collapse
|
14
|
Jiang M, Tan J, Chen Y, Zhang W, Chen P, Tang Y, Gao Q. Promoted electrocatalytic hydrogenation of furfural in a bi-phasic system. Chem Commun (Camb) 2023; 59:3103-3106. [PMID: 36808426 DOI: 10.1039/d3cc00051f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The promoted electrocatalytic hydrogenation of biomass-derived furfural to 2-methylfuran is for the first time identified in a water/oil bi-phasic system, in which the oil phase can quickly separate hydrophobic products from the electrode/electrolyte interfaces, resulting in a beneficial equilibrium toward hydrodeoxygenation.
Collapse
Affiliation(s)
- Mei Jiang
- College of Chemistry and Materials Science and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China.
| | - Jingwen Tan
- College of Chemistry and Materials Science and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China.
| | - Yizhong Chen
- College of Chemistry and Materials Science and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China.
| | - Wenbiao Zhang
- College of Chemistry and Materials Science and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China. .,Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Peng Chen
- College of Chemistry and Materials Science and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China.
| | - Yi Tang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Qingsheng Gao
- College of Chemistry and Materials Science and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China.
| |
Collapse
|
15
|
Xiao J, Bai L, Jin Q, Ma X, Yao J, Zhang X, Gao H, Yu P. Boosted charge transfer in ReS2/Nb2O5 heterostructure by dual-electric field: Toward superior electrochemical reversibility for lithium-ion storage. J Colloid Interface Sci 2023; 630:76-85. [DOI: 10.1016/j.jcis.2022.10.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
|
16
|
Facet dependence of electrocatalytic furfural hydrogenation on palladium nanocrystals. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Hao Q, Wu Y, Liu C, Shi Y, Zhang B. Unveiling subsurface hydrogen inhibition for promoting electrochemical transfer semihydrogenation of alkynes with water. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Wang M, Huang X, Yu Z, Zhang P, Zhai C, Song H, Xu J, Chen K. A Stable Rechargeable Aqueous Zn-Air Battery Enabled by Heterogeneous MoS 2 Cathode Catalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4069. [PMID: 36432355 PMCID: PMC9698408 DOI: 10.3390/nano12224069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Aqueous rechargeable zinc (Zn)−air batteries have recently attracted extensive research interest due to their low cost, environmental benignity, safety, and high energy density. However, the sluggish kinetics of oxygen (O2) evolution reaction (OER) and the oxygen reduction reaction (ORR) of cathode catalysts in the batteries result in the high over-potential that impedes the practical application of Zn−air batteries. Here, we report a stable rechargeable aqueous Zn−air battery by use of a heterogeneous two-dimensional molybdenum sulfide (2D MoS2) cathode catalyst that consists of a heterogeneous interface and defects-embedded active edge sites. Compared to commercial Pt/C-RuO2, the low cost MoS2 cathode catalyst shows decent oxygen evolution and acceptable oxygen reduction catalytic activity. The assembled aqueous Zn−air battery using hybrid MoS2 catalysts demonstrates a specific capacity of 330 mAh g−1 and a durability of 500 cycles (~180 h) at 0.5 mA cm−2. In particular, the hybrid MoS2 catalysts outperform commercial Pt/C in the practically meaningful high-current region (>5 mA cm−2). This work paves the way for research on improving the performance of aqueous Zn−air batteries by constructing their own heterogeneous surfaces or interfaces instead of constructing bifunctional catalysts by compounding other materials.
Collapse
Affiliation(s)
- Min Wang
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Xiaoxiao Huang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Zhiqian Yu
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Pei Zhang
- College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Chunyang Zhai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Hucheng Song
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Jun Xu
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Kunji Chen
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|
19
|
Huang S, Gong B, Jin Y, Sit PHL, Lam JCH. The Structural Phase Effect of MoS 2 in Controlling the Reaction Selectivity between Electrocatalytic Hydrogenation and Dimerization of Furfural. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuquan Huang
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
| | - Bo Gong
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yangxin Jin
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
| | - Patrick H.-L. Sit
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
| | - Jason Chun-Ho Lam
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
| |
Collapse
|
20
|
Wang J, Jin M, Sun Y, Zhang H. Pt-Modified MoO 3 catalyst for the electrochemically selective CO hydrogenation of cinnamaldehyde. Chem Commun (Camb) 2022; 58:6721-6724. [PMID: 35604073 DOI: 10.1039/d2cc01527g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrocatalytic selective hydrogenation of biomass-derived molecules is an important approach for synthesizing value-added chemicals. Herein, we synthesized carbon-supported platinum-modified molybdenum oxide nanoparticles (Pt-MoO3/C) to efficiently catalyze cinnamaldehyde (CAL) to cinnamyl alcohol. DFT results unveiled that the modified Pt regulated the surface electronic structure, favourable for the vertical adsorption of CAL.
Collapse
Affiliation(s)
- Jialu Wang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Centre for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China. .,University of Science and Technology of China, Hefei 230026, China
| | - Meng Jin
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Centre for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China. .,University of Science and Technology of China, Hefei 230026, China
| | - Yiyang Sun
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Haimin Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Centre for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China. .,University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
21
|
Chen P, Zhang W, Tan J, Yang Y, Jia Y, Tang Y, Gao Q. In situ reconfiguration of plasma-engineered copper electrodes towards efficient electrocatalytic hydrogenation. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00248e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Defect engineering of Cu via O2-plasma is introduced to accomplish efficient electrocatalytic hydrogenation, in which the in situ reduction of CuOx to defective Cu promotes the kinetics.
Collapse
Affiliation(s)
- Peng Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Wenbiao Zhang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Jingwen Tan
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Yang Yang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Yingshuai Jia
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials (iCHEM), Fudan University, No. 220 Handan Road, Shanghai 200433, China
| | - Yi Tang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials (iCHEM), Fudan University, No. 220 Handan Road, Shanghai 200433, China
| | - Qingsheng Gao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
22
|
Water-involving transfer hydrogenation and dehydrogenation of N-heterocycles over a bifunctional MoNi4 electrode. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63834-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Liu C, Li R, Zhou W, Liang Y, Shi Y, Li RL, Ling Y, Yu Y, Li J, Zhang B. Selectivity Origin of Organic Electrosynthesis Controlled by Electrode Materials: A Case Study on Pinacols. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Cuibo Liu
- Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Rui Li
- Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Wei Zhou
- Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Yu Liang
- Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Yanmei Shi
- Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Run-Lai Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yangfang Ling
- Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Yifu Yu
- Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Bin Zhang
- Institute of Molecular Plus, School of Science, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|