1
|
Liu J, Xia Z, Peng S, Xia J, Xu R, Wang X, Li F, Zhu W. The Important Role of Aquaglyceroporin 7 in Health and Disease. Biomolecules 2024; 14:1228. [PMID: 39456161 PMCID: PMC11505742 DOI: 10.3390/biom14101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Aquaporins (AQPs) are highly conserved small transmembrane proteins that facilitate the transport of water and small solutes across cell membranes. Aquaglyceroporin 7 (AQP7), a significant member of the AQP family, is widely distributed throughout the body. For years, AQP7 was predominantly recognized for its role as a small-molecule transporter, facilitating the passage of small molecular substances. However, growing studies have revealed that AQP7 is also involved in the regulation of lipid synthesis, gluconeogenesis, and energy homeostasis, and it is intimately linked to a variety of diseases, such as obesity, type 2 diabetes mellitus, cardiovascular diseases, cancer, and inflammatory bowel disease. This article presents a comprehensive overview of the structure of AQP7, its regulatory mechanisms, its vital roles in both healthy and diseased states, and potential therapeutic advancements. We hope that these studies will serve as a valuable reference for the development of future treatments and diagnostic protocols targeting AQP7.
Collapse
Affiliation(s)
- Jing Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Ziwei Xia
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Shuhong Peng
- Research Center for Differentiation and Development of Traditional Chinese Medicine Basic Theory, Jiangxi University of Chinese Medicine, Nanchang 330004, China;
| | - Juanjuan Xia
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Ruixiang Xu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Xin Wang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Fei Li
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weifeng Zhu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
2
|
Xie W, Li F, Zhang Y, Li B, Chen P, Liu J, Luo Y, Wang H. Elderly Women Have a Higher Survival Rate of Grafted Donor Fat than Do Young Women Under the Influence of Low Estrogen Conditions. Aesthetic Plast Surg 2024; 48:2879-2886. [PMID: 38806829 DOI: 10.1007/s00266-024-04095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Fat grafting is widely used in breast reconstruction and aesthetic plastic surgery. However, the success rate and effects of fat grafting, especially in elderly female donors, are observed. This study aimed to explore the difference in the survival rate of donor fat from elderly women and young women in fat grafting. METHODS We collected adipose tissue samples from two healthy Chinese women: a young woman and an elderly woman. In addition, adipose tissue samples were collected from female nude mice in four experimental groups-CON-Y, CON-O, OVX-Y, and OVX-O-after fat transplantation. Grafts were harvested, weighed, and subjected to assessment of histology and angiogenesis. RESULTS An ovariectomy model was successfully established to validate the effect of low estrogen levels on fat grafting results. Due to the influence of low estrogen levels, the graft survival rate of donor site fat was significantly higher in elderly women than in young women, accompanied by a lesser degree of angiogenesis. Low estrogen levels led to adipocyte hypertrophy, which may be related to decreased AQP-7 expression. CONCLUSIONS AQP-7 downregulation due to low estrogen levels induces adipocyte hypertrophy, and donor fat from elderly women exhibits a higher survival rate after fat transplantation. LEVEL OF EVIDENCE V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Wenjie Xie
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 466 Middle Xin Gang Road, Guangzhou City, Guangdong Province, China
- School of Medicine, Jinan University, Guangzhou City, Guangdong Province, China
| | - Fangwei Li
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 466 Middle Xin Gang Road, Guangzhou City, Guangdong Province, China
| | - Yaan Zhang
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 466 Middle Xin Gang Road, Guangzhou City, Guangdong Province, China
| | - Bingqing Li
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 466 Middle Xin Gang Road, Guangzhou City, Guangdong Province, China
- School of Medicine, Jinan University, Guangzhou City, Guangdong Province, China
| | - Peiqi Chen
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 466 Middle Xin Gang Road, Guangzhou City, Guangdong Province, China
| | - Jiaxing Liu
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 466 Middle Xin Gang Road, Guangzhou City, Guangdong Province, China
- School of Medicine, Jinan University, Guangzhou City, Guangdong Province, China
| | - Yingxia Luo
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 466 Middle Xin Gang Road, Guangzhou City, Guangdong Province, China
- School of Medicine, Jinan University, Guangzhou City, Guangdong Province, China
| | - Haibin Wang
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 466 Middle Xin Gang Road, Guangzhou City, Guangdong Province, China.
- School of Medicine, Jinan University, Guangzhou City, Guangdong Province, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou City, Guangdong Province, China.
| |
Collapse
|
3
|
Shu J, Zhou X, Hao J, Zhao H, An M, Zhang Y, Zhao G. Terahertz Sensing of L-Valine and L-Phenylalanine Solutions. SENSORS (BASEL, SWITZERLAND) 2024; 24:3798. [PMID: 38931580 PMCID: PMC11207273 DOI: 10.3390/s24123798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/14/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
To detect and differentiate two essential amino acids (L-Valine and L-Phenylalanine) in the human body, a novel asymmetrically folded dual-aperture metal ring terahertz metasurface sensor was designed. A solvent mixture of water and glycerol with a volume ratio of 2:8 was proposed to reduce the absorption of terahertz waves by reducing the water content. A sample chamber with a controlled liquid thickness of 15 μm was fabricated. And a terahertz time-domain spectroscopy (THz-TDS) system, which is capable of horizontally positioning the samples, was assembled. The results of the sensing test revealed that as the concentration of valine solution varied from 0 to 20 mmol/L, the sensing resonance peak shifted from 1.39 THz to 1.58 THz with a concentration sensitivity of 9.98 GHz/mmol∗L-1. The resonance peak shift phenomenon in phenylalanine solution was less apparent. It is assumed that the coupling enhancement between the absorption peak position of solutes in the solution and the sensing peak position amplified the terahertz localized electric field resonance, which resulted in the increase in frequency shift. Therefore, it could be shown that the sensor has capabilities in performing the marker sensing detection of L-Valine.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guozhong Zhao
- Beijing Key Laboratory for THz Spectroscopy and Imaging, Key Laboratory of THz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048, China; (J.S.)
| |
Collapse
|
4
|
Cao Y, Wei H, Jiang S, Lu T, Nie P, Yang C, Liu N, Lee I, Meng X, Wang W, Yuan Z. Effect of AQP4 and its palmitoylation on the permeability of exogenous reactive oxygen species: Insights from computational study. Int J Biol Macromol 2023; 253:127568. [PMID: 37866582 DOI: 10.1016/j.ijbiomac.2023.127568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Aquaporin 4 (AQP4) facilitates the transport of reactive oxygen species (ROS). Both cancer cells and the ionizing radiation microenvironment can induce posttranslational modifications (PTMs) in AQP4, which may affect its permeability to ROS. Because this ROS diffusion process is rapid, microscopic, and instantaneous within and outside cells, conventional experimental methods are inadequate for elucidating the molecular mechanisms involved. In this study, computational methods were employed to investigate the permeability of exogenous ROS mediated by radiation in AQP4 at a molecular scale. We constructed a simulation system incorporating AQP4 and AQP4-Cysp13 in a complex lipid environment with ROS. Long-timescale molecular dynamics simulations were conducted to assess the structural stability of both AQP4 and AQP4-Cysp13. Free energy calculations were utilized to determine the ROS transport capability of the two AQP4 proteins. Computational electrophysiology and channel structural analysis quantitatively evaluated changes in ROS transport capacity under various radiation-induced transmembrane voltage microenvironments. Our findings demonstrate the distinct transport capabilities of AQP4 channels for water molecules and various types of ROS and reveal a decrease in transport efficiency when AQP4 undergoes palmitoylation modification. In addition, we have simulated the radiation-induced alteration of cell membrane voltage, which significantly affected the ROS transport capacity. We propose that this research will enhance the understanding of the molecular mechanisms governing the transport of exogenous ROS by AQP4 and elucidate the influence of palmitoylation on ROS transport. This study will also help clarify how different structural features of AQP4 affect the transport of exogenous ROS mediated by radiotherapy, thereby providing a theoretical molecular basis for the development of new treatment strategies that combine with radiotherapy.
Collapse
Affiliation(s)
- Yipeng Cao
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, 300060, PR China; National Supercomputer Center in Tianjin, 300457, PR China.
| | - Hui Wei
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, 300060, PR China
| | - Shengpeng Jiang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, 300060, PR China
| | - Tong Lu
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, 300060, PR China
| | - Pengfei Nie
- National Supercomputer Center in Tianjin, 300457, PR China
| | - Chengwen Yang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, 300060, PR China
| | - Ningbo Liu
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, 300060, PR China
| | - Imshik Lee
- College of Physics, Nankai University, Tianjin 300071, PR China
| | - Xiangfei Meng
- National Supercomputer Center in Tianjin, 300457, PR China.
| | - Wei Wang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, 300060, PR China.
| | - Zhiyong Yuan
- Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, 300060, PR China.
| |
Collapse
|
5
|
Kirkegaard T, Riishede A, Tramm T, Nejsum LN. Aquaglyceroporins in Human Breast Cancer. Cells 2023; 12:2185. [PMID: 37681917 PMCID: PMC10486483 DOI: 10.3390/cells12172185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
Aquaporins are water channels that facilitate passive water transport across cellular membranes following an osmotic gradient and are essential in the regulation of body water homeostasis. Several aquaporins are overexpressed in breast cancer, and AQP1, AQP3 and AQP5 have been linked to spread to lymph nodes and poor prognosis. The subgroup aquaglyceroporins also facilitate the transport of glycerol and are thus involved in cellular metabolism. Transcriptomic analysis revealed that the three aquaglyceroporins, AQP3, AQP7 and AQP9, but not AQP10, are overexpressed in human breast cancer. It is, however, unknown if they are all expressed in the same cells or have a heterogeneous expression pattern. To investigate this, we employed immunohistochemical analysis of serial sections from human invasive ductal and lobular breast cancers. We found that AQP3, AQP7 and AQP9 are homogeneously expressed in almost all cells in both premalignant in situ lesions and invasive lesions. Thus, potential intervention strategies targeting cellular metabolism via the aquaglyceroporins should consider all three expressed aquaglyceroporins, namely AQP3, AQP7 and AQP9.
Collapse
Affiliation(s)
- Teresa Kirkegaard
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; (T.K.); (A.R.); (T.T.)
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Andreas Riishede
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; (T.K.); (A.R.); (T.T.)
| | - Trine Tramm
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; (T.K.); (A.R.); (T.T.)
- Department of Pathology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Lene N. Nejsum
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; (T.K.); (A.R.); (T.T.)
| |
Collapse
|
6
|
Ozu M, Alvear-Arias JJ, Fernandez M, Caviglia A, Peña-Pichicoi A, Carrillo C, Carmona E, Otero-Gonzalez A, Garate JA, Amodeo G, Gonzalez C. Aquaporin Gating: A New Twist to Unravel Permeation through Water Channels. Int J Mol Sci 2022; 23:12317. [PMID: 36293170 PMCID: PMC9604103 DOI: 10.3390/ijms232012317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Aquaporins (AQPs) are small transmembrane tetrameric proteins that facilitate water, solute and gas exchange. Their presence has been extensively reported in the biological membranes of almost all living organisms. Although their discovery is much more recent than ion transport systems, different biophysical approaches have contributed to confirm that permeation through each monomer is consistent with closed and open states, introducing the term gating mechanism into the field. The study of AQPs in their native membrane or overexpressed in heterologous systems have experimentally demonstrated that water membrane permeability can be reversibly modified in response to specific modulators. For some regulation mechanisms, such as pH changes, evidence for gating is also supported by high-resolution structures of the water channel in different configurations as well as molecular dynamics simulation. Both experimental and simulation approaches sustain that the rearrangement of conserved residues contributes to occlude the cavity of the channel restricting water permeation. Interestingly, specific charged and conserved residues are present in the environment of the pore and, thus, the tetrameric structure can be subjected to alter the positions of these charges to sustain gating. Thus, is it possible to explore whether the displacement of these charges (gating current) leads to conformational changes? To our knowledge, this question has not yet been addressed at all. In this review, we intend to analyze the suitability of this proposal for the first time.
Collapse
Affiliation(s)
- Marcelo Ozu
- Department of Biodiversity and Experimental Biology, Faculty of Exact & Natural Sciences, University of Buenos Aires, Buenos Aires C1053, Argentina
- CONICET—Institute of Biodiversity and Experimental and Applied Biology CONICET (IBBEA), University of Buenos Aires, Buenos Aires C1053, Argentina
| | - Juan José Alvear-Arias
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Miguel Fernandez
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Agustín Caviglia
- CONICET—Institute of Biodiversity and Experimental and Applied Biology CONICET (IBBEA), University of Buenos Aires, Buenos Aires C1053, Argentina
| | - Antonio Peña-Pichicoi
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Christian Carrillo
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
| | - Emerson Carmona
- Cell Physiology and Molecular Biophysics Department and the Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Anselmo Otero-Gonzalez
- Center of Protein Study, Faculty of Biology, University of Havana, La Habana 10400, Cuba
| | - José Antonio Garate
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
- Faculty of Engineering and Technology, University of San Sebastian, Santiago 8420524, Chile
| | - Gabriela Amodeo
- Department of Biodiversity and Experimental Biology, Faculty of Exact & Natural Sciences, University of Buenos Aires, Buenos Aires C1053, Argentina
- CONICET—Institute of Biodiversity and Experimental and Applied Biology CONICET (IBBEA), University of Buenos Aires, Buenos Aires C1053, Argentina
| | - Carlos Gonzalez
- Interdisciplinary Center of Neurosciences of Valparaiso, University of Valparaiso, CINV, Valparaíso 2360102, Chile
- Millennium Nucleus in NanoBioPhysics, Scientific and Technologic Center of Excellence of Science and Life, Santiago 7750000, Chile
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
7
|
Charlestin V, Fulkerson D, Arias Matus CE, Walker ZT, Carthy K, Littlepage LE. Aquaporins: New players in breast cancer progression and treatment response. Front Oncol 2022; 12:988119. [PMID: 36212456 PMCID: PMC9532844 DOI: 10.3389/fonc.2022.988119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
Aquaporins (AQPs) are a family of small transmembrane proteins that selectively transport water and other small molecules and ions following an osmotic gradient across cell plasma membranes. This enables them to regulate numerous functions including water homeostasis, fat metabolism, proliferation, migration, and adhesion. Previous structural and functional studies highlight a strong biological relationship between AQP protein expression, localization, and key biological functions in normal and cancer tissues, where aberrant AQP expression correlates with tumorigenesis and metastasis. In this review, we discuss the roles of AQP1, AQP3, AQP4, AQP5, and AQP7 in breast cancer progression and metastasis, including the role of AQPs in the tumor microenvironment, to highlight potential contributions of stromal-derived to epithelial-derived AQPs to breast cancer. Emerging evidence identifies AQPs as predictors of response to cancer therapy and as targets for increasing their sensitivity to treatment. However, these studies have not evaluated the requirements for protein structure on AQP function within the context of breast cancer. We also examine how AQPs contribute to a patient's response to cancer treatment, existing AQP inhibitors and how AQPs could serve as novel predictive biomarkers of therapy response in breast cancer. Future studies also should evaluate AQP redundancy and compensation as mechanisms used to overcome aberrant AQP function. This review highlights the need for additional research into how AQPs contribute molecularly to therapeutic resistance and by altering the tumor microenvironment.
Collapse
Affiliation(s)
- Verodia Charlestin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Daniel Fulkerson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Carlos E. Arias Matus
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
- Department of Biotechnology, Universidad Popular Autónoma del Estado de Puebla, Pue, Mexico
| | - Zachary T. Walker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Kevin Carthy
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| | - Laurie E. Littlepage
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
- Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, United States
| |
Collapse
|
8
|
Tang M, Xia Y, Xiao T, Cao R, Cao Y, Ouyang B. Structural Exploration on Palmitoyltransferase DHHC3 from Homo sapiens. Polymers (Basel) 2022; 14:3013. [PMID: 35893977 PMCID: PMC9332573 DOI: 10.3390/polym14153013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
DHHC3 belongs to a family of DHHC palmitoyltransferase, which catalyzes the S-palmitoylation of target proteins by attaching a fatty acyl group to a cysteine. Recently, DHHC3 has been demonstrated to be a promising antitumor target in cancer therapeutics. However, the detailed structure and catalysis mechanism of DHHC3 remain elusive, considering its sequence diversity from the DHHC homologues with known crystal structures. Here, we described the expression and purification of human DHHC3 (hDHHC3) and truncated hDHHC3 with the flexible N-terminal domain (NTD) removed. Purified hDHHC3 proteins were used under various conditions for protein crystallization. LAMTOR1, one of the interacting proteins of hDHHC3 to facilitate the crystallization, was further identified by mass spectrometry and co-immunoprecipitation assay. The structural exploration using cryogenic electronic microscopy (cryo-EM) on the inactive hDHHS3 mutant showed a typical sideview of membrane proteins. These results provide a preliminary guidance for the structural determination of DHHC3.
Collapse
Affiliation(s)
- Meng Tang
- State Key Laboratory of Molecular Biology, Centre for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; (M.T.); (T.X.); (R.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Xia
- Institute of Precision Medicine, The Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai 200125, China;
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Taoran Xiao
- State Key Laboratory of Molecular Biology, Centre for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; (M.T.); (T.X.); (R.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiyu Cao
- State Key Laboratory of Molecular Biology, Centre for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; (M.T.); (T.X.); (R.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Cao
- Institute of Precision Medicine, The Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai 200125, China;
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Bo Ouyang
- State Key Laboratory of Molecular Biology, Centre for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; (M.T.); (T.X.); (R.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Falato M, Chan R, Chen LY. Aquaglyceroporin AQP7's affinity for its substrate glycerol: Have we reached convergence in the computed values of glycerol-aquaglyceroporin affinity? RSC Adv 2022; 12:3128-3135. [PMID: 35222995 PMCID: PMC8870571 DOI: 10.1039/d1ra07367b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/18/2022] [Indexed: 12/02/2022] Open
Abstract
AQP7 is one of the four human aquaglyceroporins that facilitate glycerol transport across the cell membrane, a biophysical process that is essential in human physiology. Therefore, it is interesting to compute AQP7's affinity for its substrate (glycerol) with reasonable certainty to compare with the experimental data suggesting high affinity in contrast with most computational studies predicting low affinity. In this study aimed at computing the AQP7-glycerol affinity with high confidence, we implemented a direct computation of the affinity from unbiased equilibrium molecular dynamics (MD) simulations of three all-atom systems constituted with 0.16M, 4.32M, and 10.23M atoms, respectively. These three sets of simulations manifested a fundamental physics law that the intrinsic fluctuations of pressure in a system are inversely proportional to the system size (the number of atoms in it). These simulations showed that the computed values of glycerol-AQP7 affinity are dependent upon the system size (the inverse affinity estimations were, respectively, 47.3 mM, 1.6 mM, and 0.92 mM for the three model systems). In this, we obtained a lower bound for the AQP7-glycerol affinity (an upper bound for the dissociation constant). Namely, the AQP7-glycerol affinity is stronger than 1087/M (the dissociation constant is less than 0.92 mM). Additionally, we conducted hyper steered MD (hSMD) simulations to map out the Gibbs free-energy profile. From the free-energy profile, we produced an independent computation of the AQP7-glycerol dissociation constant being approximately 0.18 mM.
Collapse
Affiliation(s)
- Michael Falato
- Department of Physics, University of Texas at San AntonioSan AntonioTexas 78249USA
| | - Ruth Chan
- Department of Physics, University of Texas at San AntonioSan AntonioTexas 78249USA
| | - Liao Y. Chen
- Department of Physics, University of Texas at San AntonioSan AntonioTexas 78249USA
| |
Collapse
|
10
|
The gate to metabolic crossroads. Sci Bull (Beijing) 2021; 66:1488-1490. [PMID: 36654273 DOI: 10.1016/j.scib.2021.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
11
|
Rao B, Li S, Yao D, Wang Q, Xia Y, Jia Y, Shen Y, Cao Y. The cryo-EM structure of an ERAD protein channel formed by tetrameric human Derlin-1. SCIENCE ADVANCES 2021; 7:eabe8591. [PMID: 33658201 PMCID: PMC7929502 DOI: 10.1126/sciadv.abe8591] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/19/2021] [Indexed: 05/24/2023]
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is a process directing misfolded proteins from the ER lumen and membrane to the degradation machinery in the cytosol. A key step in ERAD is the translocation of ER proteins to the cytosol. Derlins are essential for protein translocation in ERAD, but the mechanism remains unclear. Here, we solved the structure of human Derlin-1 by cryo-electron microscopy. The structure shows that Derlin-1 forms a homotetramer that encircles a large tunnel traversing the ER membrane. The tunnel has a diameter of about 12 to 15 angstroms, large enough to allow an α helix to pass through. The structure also shows a lateral gate within the membrane, providing access of transmembrane proteins to the tunnel, and thus, human Derlin-1 forms a protein channel for translocation of misfolded proteins. Our structure is different from the monomeric yeast Derlin structure previously reported, which forms a semichannel with another protein.
Collapse
Affiliation(s)
- Bing Rao
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China
| | - Shaobai Li
- Shanghai Institute of Precision of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai 200125, China
| | - Deqiang Yao
- Shanghai Institute of Precision of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai 200125, China
| | - Qian Wang
- Shanghai Institute of Precision of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai 200125, China
| | - Ying Xia
- Shanghai Institute of Precision of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai 200125, China
| | - Yi Jia
- Shanghai Institute of Precision of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai 200125, China
| | - Yafeng Shen
- Shanghai Institute of Precision of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai 200125, China
| | - Yu Cao
- Shanghai Institute of Precision of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai 200125, China.
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|