1
|
Maffini F, Lepanto D, Chu F, Tagliabue M, Vacirca D, De Berardinis R, Gandini S, Vignati S, Ranghiero A, Taormina S, Rappa A, Cossu Rocca M, Alterio D, Chiocca S, Barberis M, Preda L, Pagni F, Fusco N, Ansarin M. A Transcriptomic Analysis of Laryngeal Dysplasia. Int J Mol Sci 2024; 25:9685. [PMID: 39273632 PMCID: PMC11395940 DOI: 10.3390/ijms25179685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
This article describes how the transcriptional alterations of the innate immune system divide dysplasias into aggressive forms that, despite the treatment, relapse quickly and more easily, and others where the progression is slow and more treatable. It elaborates on how the immune system can change the extracellular matrix, favoring neoplastic progression, and how infections can enhance disease progression by increasing epithelial damage due to the loss of surface immunoglobulin and amplifying the inflammatory response. We investigated whether these dysregulated genes were linked to disease progression, delay, or recovery. These transcriptional alterations were observed using the RNA-based next-generation sequencing (NGS) panel Oncomine Immune Response Research Assay (OIRRA) to measure the expression of genes associated with lymphocyte regulation, cytokine signaling, lymphocyte markers, and checkpoint pathways. During the analysis, it became apparent that certain alterations divide dysplasia into two categories: progressive or not. In the future, these biological alterations are the first step to provide new treatment modalities with different classes of drugs currently in use in a systemic or local approach, including classical chemotherapy drugs such as cisplatin and fluorouracile, older drugs like fenretinide, and new checkpoint inhibitor drugs such as nivolumab and pembrolizumab, as well as newer options like T cell therapy (CAR-T). Following these observed alterations, it is possible to differentiate which dysplasias progress or not or relapse quickly. This information could, in the future, be the basis for determining a close follow-up, minimizing surgical interventions, planning a correct and personalized treatment protocol for each patient and, after specific clinical trials, tailoring new drug treatments.
Collapse
Affiliation(s)
- Fausto Maffini
- Department of Surgical Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Daniela Lepanto
- Department of Surgical Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Francesco Chu
- Division of Otolaryngology Head and Neck Surgery, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Marta Tagliabue
- Division of Otolaryngology Head and Neck Surgery, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Davide Vacirca
- Department of Surgical Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Rita De Berardinis
- Division of Otolaryngology Head and Neck Surgery, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Sara Gandini
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Silvano Vignati
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Alberto Ranghiero
- Department of Surgical Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Sergio Taormina
- Department of Surgical Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Alessandra Rappa
- Department of Surgical Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Maria Cossu Rocca
- Medical Oncology Division of Urogenital and Head and Neck Tumors, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Daniela Alterio
- Department of Radiotherapy, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Susanna Chiocca
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Massimo Barberis
- Department of Surgical Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Lorenzo Preda
- Diagnostic Imaging Unit, National Center of Oncological Hadron-Therapy (CNAO), 27100 Pavia, Italy;
- State University School of Medicine, University of Pavia, 27100 Pavia, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, IRCCS Fondazione San Gerardo dei Tintori, University of Milano-Bicocca, 20126 Milan, Italy
| | - Nicola Fusco
- Department of Surgical Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy
- State University School of Medicine, University of Milan, 20122 Milan, Italy
| | - Mohssen Ansarin
- Division of Otolaryngology Head and Neck Surgery, European Institute of Oncology IRCCS, 20141 Milan, Italy
| |
Collapse
|
2
|
Tanaka T, Kitamura K, Suzuki H, Kaneko MK, Kato Y. Establishment of a Novel Anti-Human CCR6 Monoclonal Antibody C 6Mab-19 with the High Binding Affinity in Flow Cytometry. Monoclon Antib Immunodiagn Immunother 2023; 42:117-124. [PMID: 37428612 DOI: 10.1089/mab.2023.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023] Open
Abstract
CC chemokine receptor 6 (CCR6) is a member of the G-protein-coupled receptor family that is highly expressed in B lymphocytes, effector and memory T cells, regulatory T cells, and immature dendritic cells. CCR6 has been revealed to have important functions in many pathological conditions, such as cancer, intestinal bowel disease, psoriasis, and autoimmune diseases. The only CCR6 chemokine ligand, CC motif chemokine ligand 20 (CCL20), is also involved in pathogenesis by interacting with CCR6. The CCL20/CCR6 axis is drawing attention as an attractive therapeutic target for various diseases. In this study, we developed novel monoclonal antibodies (mAbs) against human CCR6 (hCCR6) using the peptide immunization method, which are applicable to flow cytometry and immunohistochemistry. The established anti-hCCR6 mAb, clone C6Mab-19 (mouse IgG1, kappa), reacted with hCCR6-overexpressed Chinese hamster ovary-K1 (CHO/hCCR6), human liver carcinoma (HepG2), and human differentiated hepatoma (HuH-7) cells in flow cytometry. The dissociation constant (KD) of C6Mab-19 was determined as 3.0 × 10-10 M for CHO/hCCR6, 6.9 × 10-10 M for HepG2, and 1.8 × 10-10 M for HuH-7. Thus, C6Mab-19 could bind to exogenously and endogenously expressed hCCR6 with extremely high affinity. Furthermore, C6Mab-19 could stain formalin-fixed paraffin-embedded lymph node tissues from a patient with non-Hodgkin lymphoma by immunohistochemistry. Therefore, C6Mab-19 is suitable for detecting hCCR6-expressing cells and tissues and could be useful for pathological analysis and diagnosis.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kaishi Kitamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
3
|
Tanaka T, Tawara M, Suzuki H, Kaneko MK, Kato Y. Identification of the Binding Epitope of an Anti-Mouse CCR6 Monoclonal Antibody (C 6Mab-13) Using 1× Alanine Scanning. Antibodies (Basel) 2023; 12:antib12020032. [PMID: 37218898 DOI: 10.3390/antib12020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
CC chemokine receptor 6 (CCR6) is one of the members of the G-protein-coupled receptor (GPCR) family that is upregulated in many immune-related cells, such as B lymphocytes, effector and memory T cells, regulatory T cells, and immature dendritic cells. The coordination between CCR6 and its ligand CC motif chemokine ligand 20 (CCL20) is deeply involved in the pathogenesis of various diseases, such as cancer, psoriasis, and autoimmune diseases. Thus, CCR6 is an attractive target for therapy and is being investigated as a diagnostic marker for various diseases. In a previous study, we developed an anti-mouse CCR6 (mCCR6) monoclonal antibody (mAb), C6Mab-13 (rat IgG1, kappa), that was applicable for flow cytometry by immunizing a rat with the N-terminal peptide of mCCR6. In this study, we investigated the binding epitope of C6Mab-13 using an enzyme-linked immunosorbent assay (ELISA) and the surface plasmon resonance (SPR) method, which were conducted with respect to the synthesized point-mutated-peptides within the 1-20 amino acid region of mCCR6. In the ELISA results, C6Mab-13 lost its ability to react to the alanine-substituted peptide of mCCR6 at Asp11, thereby identifying Asp11 as the epitope of C6Mab-13. In our SPR analysis, the dissociation constants (KD) could not be calculated for the G9A and D11A mutants due to the lack of binding. The SPR analysis demonstrated that the C6Mab-13 epitope comprises Gly9 and Asp11. Taken together, the key binding epitope of C6Mab-13 was determined to be located around Asp11 on mCCR6. Based on the epitope information, C6Mab-13 could be useful for further functional analysis of mCCR6 in future studies.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mayuki Tawara
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mika K Kaneko
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
4
|
Mei H, Hari P, Hu Y. Exercise "CALM" and make CAR-T therapy work better. Sci Bull (Beijing) 2022; 67:1925-1928. [PMID: 36546195 DOI: 10.1016/j.scib.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Parameswaran Hari
- Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee 53226, USA
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|