1
|
Dong Q, Zhang Q, Yang X, Nai S, Du X, Chen L. Glycolysis-Stimulated Esrrb Lactylation Promotes the Self-Renewal and Extraembryonic Endoderm Stem Cell Differentiation of Embryonic Stem Cells. Int J Mol Sci 2024; 25:2692. [PMID: 38473939 DOI: 10.3390/ijms25052692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Embryonic stem cells (ESCs) favor glycolysis over oxidative phosphorylation for energy production, and glycolytic metabolism is critical for pluripotency establishment, maintenance, and exit. However, an understanding of how glycolysis regulates the self-renewal and differentiation of ESCs remains elusive. Here, we demonstrated that protein lactylation, regulated by intracellular lactate, contributes to the self-renewal of ESCs. We further showed that Esrrb, an orphan nuclear receptor involved in pluripotency maintenance and extraembryonic endoderm stem cell (XEN) differentiation, is lactylated on K228 and K232. The lactylation of Esrrb enhances its activity in promoting ESC self-renewal in the absence of the LIF and XEN differentiation of ESCs by increasing its binding at target genes. Our studies reveal the importance of protein lactylation in the self-renewal and XEN differentiation of ESCs, and the underlying mechanism of glycolytic metabolism regulating cell fate choice.
Collapse
Affiliation(s)
- Qiman Dong
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300074, China
| | - Qingye Zhang
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300074, China
| | - Xiaoqiong Yang
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300074, China
| | - Shanshan Nai
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300074, China
| | - Xiaoling Du
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300074, China
| | - Lingyi Chen
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Frontiers Science Center for Cell Responses, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300074, China
| |
Collapse
|
2
|
Zhang XS, Xie G, Ma H, Ding S, Wu YX, Fei Y, Cheng Q, Huang Y, Wang Y. Highly reproducible and cost-effective one-pot organoid differentiation using a novel platform based on PF-127 triggered spheroid assembly. Biofabrication 2023; 15:045014. [PMID: 37552975 DOI: 10.1088/1758-5090/acee21] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
Organoid technology offers sophisticatedin vitrohuman models for basic research and drug development. However, low batch-to-batch reproducibility and high cost due to laborious procedures and materials prevent organoid culture standardization for automation and high-throughput applications. Here, using a novel platform based on the findings that Pluronic F-127 (PF-127) could trigger highly uniform spheroid assembly through a mechanism different from plate coating, we develop a one-pot organoid differentiation strategy. Using our strategy, we successfully generate cortical, nephron, hepatic, and lung organoids with improved reproducibility compared to previous methods while reducing the original costs by 80%-95%. In addition, we adapt our platform to microfluidic chips allowing automated culture. We showcase that our platform can be applied to tissue-specific screening, such as drug toxicity and transfection reagents testing. Finally, we generateNEAT1knockout tissue-specific organoids and showNEAT1modulates multiple signaling pathways fine-tuning the differentiation of nephron and hepatic organoids and suppresses immune responses in cortical organoids. In summary, our strategy provides a powerful platform for advancing organoid research and studying human development and diseases.
Collapse
Affiliation(s)
- Xiao-Shan Zhang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, People's Republic of China
| | - Gang Xie
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Honghao Ma
- Peking-Tsinghua Center for Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing, People's Republic of China
| | - Shuangjin Ding
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, People's Republic of China
| | - Yi-Xia Wu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, People's Republic of China
| | - Yuan Fei
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, People's Republic of China
| | - Qiang Cheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, People's Republic of China
| | - Yanyi Huang
- Peking-Tsinghua Center for Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing, People's Republic of China
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, People's Republic of China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen, People's Republic of China
| | - Yangming Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, People's Republic of China
| |
Collapse
|
3
|
Wang SH, Hao J, Zhang C, Duan FF, Chiu YT, Shi M, Huang X, Yang J, Cao H, Wang Y. KLF17 promotes human naive pluripotency through repressing MAPK3 and ZIC2. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1985-1997. [PMID: 35391627 DOI: 10.1007/s11427-021-2076-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The pluripotent state of embryonic stem cells (ESCs) is regulated by a sophisticated network of transcription factors. High expression of KLF17 has recently been identified as a hallmark of naive state of human ESCs (hESCs). However, the functional role of KLF17 in naive state is not clear. Here, by employing various gain and loss-of-function approaches, we demonstrate that KLF17 is essential for the maintenance of naive state and promotes the primed to naive state transition in hESCs. Mechanistically, we identify MAPK3 and ZIC2 as two direct targets repressed by KLF17. Overexpression of MAPK3 or ZIC2 partially blocks KLF17 from promoting the naive pluripotency. Furthermore, we find that human and mouse homologs of KLF17 retain conserved functions in promoting naive pluripotency of both species. Finally, we show that Klf17 may be essential for early embryo development in mouse. These findings demonstrate the important and conserved function of KLF17 in promoting naive pluripotency and reveal two essential transcriptional targets of KLF17 that underlie its function.
Collapse
Affiliation(s)
- Shao-Hua Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Jing Hao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Chao Zhang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Fei-Fei Duan
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Ya-Tzu Chiu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Ming Shi
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Xin Huang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jihong Yang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Huiqing Cao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China.
| | - Yangming Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Li X, Shi X, Gong Y, Guo W, Liu Y, Peng C, Xu Y. Selective Chemical Labeling and Sequencing of 5-Hydroxymethylcytosine in DNA at Single-Base Resolution. Front Genet 2021; 12:749211. [PMID: 34868220 PMCID: PMC8635956 DOI: 10.3389/fgene.2021.749211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/08/2021] [Indexed: 11/24/2022] Open
Abstract
5-Hydroxymethylcytosine (5hmC), the oxidative product of 5-methylcytosine (5mC) catalyzed by ten-eleven translocation enzymes, plays an important role in many biological processes as an epigenetic mediator. Prior studies have shown that 5hmC can be selectively labeled with chemically modified glucose moieties and enriched using click chemistry with biotin affinity approaches. Besides, DNA deaminases of the AID/APOBEC family can discriminate modified 5hmC bases from cytosine (C) or 5mC. Herein, we developed a method based on embryonic stem cell (ESC) whole-genome analysis, which could enrich 5hmC-containing DNA by selective chemical labeling and locate 5hmC sites at single-base resolution with enzyme-based deamination. The combination experimental design is an extension of previous methods, and we hope that this cost-effective single-base resolution 5hmC sequencing method could be used to promote the mechanism and diagnosis research of 5hmC.
Collapse
Affiliation(s)
- Xiaogang Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Xinxin Shi
- Gastrointestinal Surgery Department of the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yin Gong
- School of Electronics Engineering and Computer Science, Peking University, Beijing, China
| | - Wenting Guo
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuanrui Liu
- Characteristic Medical Center of the Chinese People’s Armed Police Force, Tianjin, China
| | - Chunwei Peng
- Gastrointestinal Surgery Department of the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yingchun Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| |
Collapse
|