1
|
AL-Shujaa S, Zhao P, He D, Al-Anesi B, Feng Y, Xia J, Zhang B, Zhang Y. Improving the Efficiency and Stability of Perovskite Solar Cells by Refining the Perovskite-Electron Transport Layer Interface and Shielding the Absorber from UV Effects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28493-28504. [PMID: 38798187 PMCID: PMC11163405 DOI: 10.1021/acsami.4c03329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
This study aims to enhance the performance of perovskite solar cells (PSCs) by optimizing the interface between the perovskite and electron transport layers (ETLs). Additionally, we plan to protect the absorber layer from ultraviolet (UV) degradation using a ternary oxide system comprising SnO2, strontium stannate (SrSnO3), and strontium oxide (SrO). In this structure, the SnO2 layer functions as an electron transport layer, SrSnO3 acts as a layer for UV filtration, and SrO is employed to passivate the interface. SrSnO3 is characterized by its chemical stability, electrical conductivity, extensive wide band gap energy, and efficient absorption of UV radiation, all of which significantly enhance the photostability of PSCs against UV radiation. Furthermore, incorporating SrSnO3 into the ETL improves its electronic properties, potentially raising the energy level and improving alignment, thereby enhancing the electron transfer from the perovskite layer to the external circuit. Integrating SrO at the interface between the ETL and perovskite layer reduces interface defects, thereby reducing charge recombination and improving electron transfer. This improvement results in higher solar cell efficiency, reduced hysteresis, and extended device longevity. The benefits of this method are evident in the observed improvements: a noticeable increase in open-circuit voltage (Voc) from 1.12 to 1.16 V, an enhancement in the fill factor from 79.4 to 82.66%, a rise in the short-circuit current density (Jsc) from 24.5 to 24.9 mA/cm2 and notably, a marked improvement in the power conversion efficiency (PCE) of PSCs, from 21.79 to 24.06%. Notably, the treated PSCs showed only a slight decline in PCE, reducing from 24.15 to 22.50% over nearly 2000 h. In contrast, untreated SnO2 perovskite devices experienced a greater decline, with efficiency decreasing from 21.79 to 17.83% in just 580 h.
Collapse
Affiliation(s)
- Salah AL-Shujaa
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Peng Zhao
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Dingqian He
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Basheer Al-Anesi
- Faculty
of Engineering and Natural Sciences, Tampere
University, Tampere 33014, Finland
| | - Yaqing Feng
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Jianxing Xia
- Institute
of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Bao Zhang
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Haihe
Laboratory of Sustainable Chemical Transformations, 300192 Tianjin, China
| | - Yi Zhang
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Institute
of Molecular Plus, Tianjin University, Tianjin 300072, China
- Haihe
Laboratory of Sustainable Chemical Transformations, 300192 Tianjin, China
| |
Collapse
|
2
|
Azad SS, Keshavarzi R, Mirkhani V, Moghadam M, Tangestaninejad S, Mohammadpoor-Baltork I. Stability enhancement of perovskite solar cells using multifunctional inorganic materials with UV protective, self cleaning, and high wear resistance properties. Sci Rep 2024; 14:6466. [PMID: 38499593 PMCID: PMC10948775 DOI: 10.1038/s41598-024-57133-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/25/2023] [Accepted: 03/14/2024] [Indexed: 03/20/2024] Open
Abstract
Organometal halide perovskite solar cells have reached a high power conversion efficiency of up to 25.8% but suffered from poor long-term stability against environmental factors such as ultraviolet irradiation and humidity of the environment. Herein, two different multifunctional transparent coatings containing AZO and ZnO porous UV light absorbers were employed on the front of the PSCs. This strategy is designed to improve the long-term stability of PSCs against UV irradiation. Moreover, the provided coatings exhibit two additional roles, including self-cleaning and high wear resistance. In this regard, AZO coating showed higher wear resistance compared to the ZnO coating. The photocatalytic self-cleaning properties of these prepared coatings make them stable against environmental pollutants. Furthermore, appropriate mechanical properties such as high hardness and low coefficient of friction that leads to high resistance against wear are other features of these coatings. The devices with AZO/Glass/FTO/meso-TiO2/Perovskite/spiro/Au and ZnO/Glass/FTO/meso-TiO2/Perovskite/spiro/Au configurations maintained 40% and 30% of their initial performance for 100 h during 11 days (9 h per day) against the UV light with the high intensity of 50 mW cm-2 which is due to higher absorption of AZO compared with ZnO in the ultraviolet region. Since AZO has a higher light transmission in the visible region in comparison to ZnO, perovskite cells with AZO protective layers have higher efficiency than perovskite cells with ZnO layers. It is worth noting that the mentioned features make these coatings usable for cover glass in all types of solar cells.
Collapse
Affiliation(s)
| | - Reza Keshavarzi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran.
| | - Valiollah Mirkhani
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran.
| | - Majid Moghadam
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | | | | |
Collapse
|
3
|
Li C, Sun H, Wang M, Gan S, Dou D, Li L. High-performance pulse light stable perovskite indoor photovoltaics. Sci Bull (Beijing) 2024; 69:334-344. [PMID: 38105158 DOI: 10.1016/j.scib.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/24/2023] [Revised: 11/10/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Perovskite solar cells offer great potential as a sustainable power source for distributed electronic devices that operate indoors. However, the impact of advanced lighting technology, especially the widely used pulse width modulation (PWM) technology, on perovskite photovoltaics has been ignored. Herein, for the first time in photovoltaics, we find that the light impact emitted by the PWM lighting system caused dynamic strain in perovskite thin films, induced phase separation, and accelerated the generation of metallic lead (Pb0) defects, leading to irreversible degradation of the cell performance after 27 h (T80). To address this issue, formamidinium triiodide (FAI3) is chosen to treat the surface of the perovskite and release residual stress, resulting in reduced lattice deformation during dynamic strain processes. Meanwhile, it suppresses harmful Pb0 defects and reduces Voc loss at low light intensity. The champion device achieves impressive power conversion efficiency (PCE) of 35.14% and retains 99.5% of the initial PCE after continuous strobe light soaking for 2160 h.
Collapse
Affiliation(s)
- Chen Li
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou 215006, China
| | - Haoxuan Sun
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou 215006, China.
| | - Min Wang
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou 215006, China
| | - Shan Gan
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou 215006, China
| | - Da Dou
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou 215006, China
| | - Liang Li
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou 215006, China.
| |
Collapse
|
4
|
Liu J, Liu N, Li G, Wang Y, Wang Z, Zhang Z, Xu D, Jiang Y, Gao X, Lu X, Feng SP, Zhou G, Liu JM, Gao J. Cinnamate-Functionalized Cellulose Nanocrystals as Interfacial Layers for Efficient and Stable Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1348-1357. [PMID: 36544390 DOI: 10.1021/acsami.2c19193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/17/2023]
Abstract
The poor interfacial contact and imperfections between the charge transport layer and perovskite film often result in carrier recombination, inefficient charge collection, and inferior stability of perovskite solar cells (PSCs). Therefore, interface engineering is quite crucial to achieve high-performance and stable PSCs. Here, we introduced a cinnamate-functionalized cellulose nanocrystals (Cin-CNCs) interfacial layer between SnO2 and perovskite active layer for enhancing carrier transport ability and crystal growth of perovskite, meanwhile endowing additional functional of long-term device stability against ultraviolet light. The enhancement of interfacial contact between SnO2 and perovskite layer and cascade energy alignment are realized, which is beneficial for obtaining the desirable perovskite film morphology, passivating the interfacial defects, and restraining charge recombination in the SnO2/perovskite interface. An efficiency as high as 23.18%, with an open-circuit voltage of 1.15 V and a significantly enhanced fill factor of 81.07%, is achieved. In addition, the unencapsulated PSCs maintain 75% of the initial PCE after aging for over 1500 h under 25 °C and 30% relative humidity, with better light-soaking stability. These results exhibit the vital role for Cin-CNCs in interfacial modification and constructing high-performance perovskite solar cells.
Collapse
Affiliation(s)
- Jiayan Liu
- Institute for Advanced Materials & Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou510006, China
| | - Nana Liu
- Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou510006, China
| | - Gu Li
- Institute for Advanced Materials & Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou510006, China
| | - Yuqi Wang
- Institute for Advanced Materials & Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou510006, China
| | - Zhen Wang
- Institute for Advanced Materials & Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou510006, China
| | - Zhen Zhang
- Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou510006, China
| | - Dongdong Xu
- Institute for Advanced Materials & Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou510006, China
| | - Yue Jiang
- Institute for Advanced Materials & Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou510006, China
| | - Xingsen Gao
- Institute for Advanced Materials & Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou510006, China
| | - Xubing Lu
- Institute for Advanced Materials & Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou510006, China
| | - Shien-Ping Feng
- Department of Advanced Design and Systems Engineering, City University of Hong Kong, Kowloon, Hong Kong999077, P. R. China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou510006, China
| | - Jun-Ming Liu
- Laboratory of Solid-State Microstructures, Nanjing University, Nanjing210093, China
| | - Jinwei Gao
- Institute for Advanced Materials & Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou510006, China
| |
Collapse
|