1
|
Liao HX, Yang J, Wen JR, Nie HY, Zhao J, Xu FR, Liu XY, Dong X. β-Caryophyllene oxide inhibits lysine acetylation of histones in Fusarium proliferatum to block ribosomal biosynthesis and function. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106213. [PMID: 39672623 DOI: 10.1016/j.pestbp.2024.106213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 12/15/2024]
Abstract
The natural bicyclic sesquiterpene, β-Caryophyllene oxide (BCPO), has demonstrated inhibitory activity against Fusarium species. While previous studies have documented its antifungal properties through various biochemical mechanisms, the role of BCPO in modulating epigenetic modifications of DNA via histone deacetylases (HDACs) has received comparatively less attention. The study aims to elucidate how BCPO inhibits Fusarium proliferatum by affecting histone acetylation. Our results indicate that BCPO enhances FPRO_01165 (FpSIR2) enzyme activity to 6.01 ng/min/mg, representing a 55.30 % increase. Molecular docking analysis and molecular dynamics simulation confirmed the interaction between BCPO and FpSIR2. Furthermore, high concentrations (HC) of BCPO significantly inhibited the growth of F. proliferatum, resulting in marked reductions in H3K9ac and H3K27ac modification levels. We conducted chromatin immunoprecipitation sequencing (ChIP-seq) to identify enrichments of H3K9ac and H3K27ac, while also obtaining transcriptomic data from the HC treatment group. Combined analyses revealed that decreased levels of H3K9ac and H3K27ac primarily affected ribosomal pathways in F. proliferatum, leading to downregulation of several ribosomal genes and their corresponding proteins, such as RPL4, RPS19, and RPS16. Our findings suggest that BCPO stimulates both the production and activity of FpSIR2, which subsequently inhibits histone lysine acetylation in F. proliferatum. This inhibition suppresses ribosome biosynthesis and function as well as overall growth in this pathogen. The property of BCPO to reduce acetylation provides new insights for developing highly efficient yet low-toxicity antifungal agents.
Collapse
Affiliation(s)
- Hong-Xin Liao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China; College of Life Sciences, Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan 430056, People's Republic of China
| | - Jing Yang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China; College of Life Sciences, Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan 430056, People's Republic of China
| | - Jin-Rui Wen
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Hong-Yan Nie
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Jun Zhao
- School of Geography, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Fu-Rong Xu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Xiao-Yun Liu
- College of Life Sciences, Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan 430056, People's Republic of China.
| | - Xian Dong
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China.
| |
Collapse
|
2
|
Si Q, Bai M, Wang X, Wang T, Qin Y. Photonanozyme-Kras-ribosome combination treatment of non-small cell lung cancer after COVID-19. Front Immunol 2024; 15:1420463. [PMID: 39308869 PMCID: PMC11412844 DOI: 10.3389/fimmu.2024.1420463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
With the outbreak of the coronavirus disease 2019 (COVID-19), reductions in T-cell function and exhaustion have been observed in patients post-infection of COVID-19. T cells are key mediators of anti-infection and antitumor, and their exhaustion increases the risk of compromised immune function and elevated susceptibility to cancer. Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer with high incidence and mortality. Although the survival rate after standard treatment such as surgical treatment and chemotherapy has improved, the therapeutic effect is still limited due to drug resistance, side effects, and recurrence. Recent advances in molecular biology and immunology enable the development of highly targeted therapy and immunotherapy for cancer, which has driven cancer therapies into individualized treatments and gradually entered clinicians' views for treating NSCLC. Currently, with the development of photosensitizer materials, phototherapy has been gradually applied to the treatment of NSCLC. This review provides an overview of recent advancements and limitations in different treatment strategies for NSCLC under the background of COVID-19. We discuss the latest advances in phototherapy as a promising treatment method for NSCLC. After critically examining the successes, challenges, and prospects associated with these treatment modalities, their profound prospects were portrayed.
Collapse
Affiliation(s)
- Qiaoyan Si
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
- School of Biomedical Engineering, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mingjian Bai
- School of Biomedical Engineering, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xiaolong Wang
- School of Biomedical Engineering, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Tianyu Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yan Qin
- School of Biomedical Engineering, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Wang N, Liu Z, Zhou Y, Zhao L, Kou X, Wang T, Wang Y, Sun P, Lu G. Imparting Chemiresistor with Humidity-Independent Sensitivity toward Trace-Level Formaldehyde via Substitutional Doping Platinum Single Atom. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310465. [PMID: 38366001 DOI: 10.1002/smll.202310465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/24/2024] [Indexed: 02/18/2024]
Abstract
The modification of metal oxides with noble metals is one of the most effective means of improving gas-sensing performance of chemiresistors, but it is often accompanied by unintended side effects such as sensor resistance increases up to unmeasurable levels. Herein, a carbonization-oxidation method is demonstrated using ultrasonic spray pyrolysis technique to realize platinum (Pt) single atom (SA) substitutional doping into SnO2 (named PtSA-SnO2). The substitutional doping strategy can obviously enhance gas-sensing properties, and meanwhile decrease sensor resistance by two orders of magnitude (decreased from ≈850 to ≈2 MΩ), which are attributed to the tuning of band gap and fermi-level position, efficient single atom catalysis, and the raising of adsorption capability of formaldehyde, as validated by the state-of-the-art characterizations, such as spherical aberration-corrected scanning transmission electron microscopy (Cs-corrected STEM), in situ diffuse reflectance infrared Fourier transformed spectra (in situ DRIFT), CO temperature-programmed reduction (CO-TPR), and theoretical calculations. As a proof of concept, the developed PtSA-SnO2 sensor shows humidity-independent (30-70% relative humidity) gas-sensing performance in the selective detection of formaldehyde with high response, distinguishable selectivity (8< Sformaldehyde/Sinterferant <14), and ultra-low detection limit (10 ppb). This work presents a generalized and facile method to design high-performance metal oxides for chemical sensing of volatile organic compounds (VOCs).
Collapse
Affiliation(s)
- Ningyi Wang
- State Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Zihe Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yun Zhou
- State Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Liupeng Zhao
- State Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Xueying Kou
- School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Tianshuang Wang
- State Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yanchao Wang
- International Center for Computational Methods and Software and State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Peng Sun
- State Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Geyu Lu
- State Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| |
Collapse
|
4
|
Hong M, Du Y, Chen D, Shi Y, Hu M, Tang K, Hong Z, Meng X, Xu W, Wu G, Yao Y, Chen L, Chen W, Lau CY, Sheng L, Zhang TH, Huang H, Fang Z, Shen Y, Sun F, Qian J, Qu H, Zheng S, Zhang S, Ding K, Sun R. Martynoside rescues 5-fluorouracil-impaired ribosome biogenesis by stabilizing RPL27A. Sci Bull (Beijing) 2023; 68:1662-1677. [PMID: 37481436 DOI: 10.1016/j.scib.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/11/2023] [Accepted: 06/25/2023] [Indexed: 07/24/2023]
Abstract
Martynoside (MAR), a bioactive component in several well-known tonic traditional Chinese herbs, exhibits pro-hematopoietic activity during 5-fluorouracil (5-FU) treatment. However, the molecular target and the mechanism of MAR are poorly understood. Here, by adopting the mRNA display with a library of even-distribution (md-LED) method, we systematically examined MAR-protein interactions in vitro and identified the ribosomal protein L27a (RPL27A) as a key cellular target of MAR. Structural and mutational analysis confirmed the specific interaction between MAR and the exon 4,5-encoded region of RPL27A. MAR attenuated 5-FU-induced cytotoxicity in bone marrow nucleated cells, increased RPL27A protein stability, and reduced the ubiquitination of RPL27A at lys92 (K92) and lys94 (K94). Disruption of MAR binding at key residues of RPL27A completely abolished the MAR-induced stabilization. Furthermore, by integrating label-free quantitative ubiquitination proteomics, transcriptomics, and ribosome function assays, we revealed that MAR restored RPL27A protein levels and thus rescued ribosome biogenesis impaired by 5-FU. Specifically, MAR increased mature ribosomal RNA (rRNA) abundance, prevented ribosomal protein degradation, facilitated ribosome assembly, and maintained nucleolar integrity. Collectively, our findings characterize the target of a component of Chinese medicine, reveal the importance of ribosome biogenesis in hematopoiesis, and open up a new direction for improving hematopoiesis by targeting RPL27A.
Collapse
Affiliation(s)
- Mengying Hong
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles 90095, USA; Zhejiang Province Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou 310009, China; Zhejiang Provincial Clinical Research Center for Cancer, Cancer Center of Zhejiang University, Hangzhou 310009, China
| | - Yushen Du
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles 90095, USA; Zhejiang Province Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou 310009, China; Zhejiang Provincial Clinical Research Center for Cancer, Cancer Center of Zhejiang University, Hangzhou 310009, China.
| | - Dongdong Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles 90095, USA
| | - Yuan Shi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles 90095, USA
| | - Menglong Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kejun Tang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhuping Hong
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiangzhi Meng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles 90095, USA; Center for Infectious Disease Research, School of Life Sciences, Institute for Advanced Studies, Westlake University, Hangzhou 310024, China
| | - Wan Xu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Gaoqi Wu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuanyuan Yao
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Liubo Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wenteng Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chit Ying Lau
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Li Sheng
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles 90095, USA
| | - Tian-Hao Zhang
- Molecular Biology Institute, University of California, Los Angeles 90095, USA
| | - Haigen Huang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles 90095, USA
| | - Zheyu Fang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yong Shen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Fangfang Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jing Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Zhejiang Province Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou 310009, China; Zhejiang Provincial Clinical Research Center for Cancer, Cancer Center of Zhejiang University, Hangzhou 310009, China
| | - Suzhan Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Zhejiang Province Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou 310009, China; Zhejiang Provincial Clinical Research Center for Cancer, Cancer Center of Zhejiang University, Hangzhou 310009, China
| | - Kefeng Ding
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Zhejiang Province Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou 310009, China; Zhejiang Provincial Clinical Research Center for Cancer, Cancer Center of Zhejiang University, Hangzhou 310009, China
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles 90095, USA; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Molecular Biology Institute, University of California, Los Angeles 90095, USA; Center for Infectious Disease Research, School of Life Sciences, Institute for Advanced Studies, Westlake University, Hangzhou 310024, China.
| |
Collapse
|
5
|
Zhang N, Zhao Z, Zhao Y, Yang L, Xue Y, Feng Y, Luo J, Chen R, Wei W, Qin Y. TGF-β changes cyto/mito-ribosome balance to target respiratory chain complex V biogenesis in pulmonary fibrosis therapy. Signal Transduct Target Ther 2023; 8:136. [PMID: 36944616 PMCID: PMC10030894 DOI: 10.1038/s41392-023-01370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/15/2023] [Accepted: 02/14/2023] [Indexed: 03/23/2023] Open
Affiliation(s)
- Na Zhang
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, 300052, Tianjin, China
| | - Zunling Zhao
- CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yin Zhao
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, 300052, Tianjin, China
| | - Lei Yang
- CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yanhong Xue
- CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, 100101, Beijing, China
| | - Yun Feng
- CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, 100101, Beijing, China
| | - Jianjun Luo
- CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Runsheng Chen
- CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wei Wei
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, 300052, Tianjin, China
| | - Yan Qin
- CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
6
|
Wang J, Yang B, Lv C, Chen T, Sun L, Sun L, Hao J, Ding F, Wang T, Jiang J, Qin Y. Amino porphyrin-peptide assemblies induce ribosome damage and cancer stem cell inhibition for an enhanced photodynamic therapy. Biomaterials 2022; 289:121812. [PMID: 36152516 DOI: 10.1016/j.biomaterials.2022.121812] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
Cancer stem cells (CSCs) are the subpopulation of tumor cells with the properties of tumorigenesis, multilineage differentiation potential and self-renewal, which is the driving force of tumor recurrence and metastasis. However, targeting CSCs is still the main challenge in cancer therapy due to their rapid growth and fast mutation rate. Herein, we developed a simple strategy of photodynamic therapy (PDT) targeting CSCs, dependent on much more abundant ribosomes in CSCs. The interactions between positively charged nanoparticles with negatively charged nucleic acids architectures in cancer cells could lead ribosomes targeting as well as CSCs targeting. The co-assembly of simple amino porphyrin (m-TAPP) with short peptide (Fmoc-L3-OMe) formed nanoparticles (NPs) with good biocompatibility and photoactivity, became positively charged due to low pH value of tumour microenvironment, and efficiently accessed cancer cell ribosome, approached cancer cell nuclei, therefore enriched in the fast-amplifying CSCs. The inhibitive effect on CSCs by m-TAPP assemblies was verified by the significant reduction of CSCs markers CD44, CD133 and ribosome amount in cancer cells and tissues. Upon light irradiation, the NPs induced ROS generation to provoke destructive cancer cell ribosome damage and subsequent apoptosis to prevent tumor growth markedly. Based on the assemblies of small organic molecules, our study not only achieves ribosome degradation induced cancer cells apoptosis, but also indicates new possibility of performing CSCs targeting PDT.
Collapse
Affiliation(s)
- Jian Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Baochan Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Chaofan Lv
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Tiancheng Chen
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Lixin Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Lei Sun
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Junfeng Hao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Fang Ding
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China.
| | - Tianyu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Yan Qin
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|