1
|
Qin F, Chen F, Cao Y, Wang L, Wang C, Liao Y, Dai Y, Lu J, Lan X, Wang X, Tang X, Liu X, Zhu G, Wang Y. Optical wireless communication using a flexible and waterproof perovskite color converter. OPTICS LETTERS 2024; 49:2229-2232. [PMID: 38691686 DOI: 10.1364/ol.518687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/25/2024] [Indexed: 05/03/2024]
Abstract
In this Letter, the CH3NH3PbBr3 nanocrystals (NCs) are embedded into the interstices of the fluorine (polyvinyl fluoride/polyvinylidene fluoride, PVF/PVDF) matrix on polyethylene terephthalate (PET) substrate to introduce new advantages, such as being flexible and waterproof, while maintaining the high optical performance of perovskites. The sample's photoluminescence (PL) spectra under 325 nm laser is a green emission peaked at 537 nm with full width at half maximum (FWHM) of about 21.2 nm and a fast PL decay time. As a color converter, it shows high optical absorption and can transform light from solar-blind ultraviolet to a blue region into a green region in air, water, and bending conditions. While excited by a 270 nm ultraviolet light-emitting diode (LED), the system's observed -3 dB bandwidth with the color converter is near 4.4 MHz in air and water conditions with well-eye diagrams at a data rate of 30 Mbps. Finally, we demonstrate an audio transmission application with an ultraviolet light source, a color conversion layer, and a low-cost silicon-based photodetector.
Collapse
|
2
|
Li C, Sun H, Wang M, Gan S, Dou D, Li L. High-performance pulse light stable perovskite indoor photovoltaics. Sci Bull (Beijing) 2024; 69:334-344. [PMID: 38105158 DOI: 10.1016/j.scib.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/10/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Perovskite solar cells offer great potential as a sustainable power source for distributed electronic devices that operate indoors. However, the impact of advanced lighting technology, especially the widely used pulse width modulation (PWM) technology, on perovskite photovoltaics has been ignored. Herein, for the first time in photovoltaics, we find that the light impact emitted by the PWM lighting system caused dynamic strain in perovskite thin films, induced phase separation, and accelerated the generation of metallic lead (Pb0) defects, leading to irreversible degradation of the cell performance after 27 h (T80). To address this issue, formamidinium triiodide (FAI3) is chosen to treat the surface of the perovskite and release residual stress, resulting in reduced lattice deformation during dynamic strain processes. Meanwhile, it suppresses harmful Pb0 defects and reduces Voc loss at low light intensity. The champion device achieves impressive power conversion efficiency (PCE) of 35.14% and retains 99.5% of the initial PCE after continuous strobe light soaking for 2160 h.
Collapse
Affiliation(s)
- Chen Li
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou 215006, China
| | - Haoxuan Sun
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou 215006, China.
| | - Min Wang
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou 215006, China
| | - Shan Gan
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou 215006, China
| | - Da Dou
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou 215006, China
| | - Liang Li
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou 215006, China.
| |
Collapse
|
3
|
Chen R, Sun C, Cheng X, Lin Y, Zhou J, Yin J, Cui BB, Mao L. One-Dimensional Organic-Inorganic Lead Bromide Hybrids with Excitation-Dependent White-Light Emission Templated by Pyridinium Derivatives. Inorg Chem 2023. [PMID: 37285221 DOI: 10.1021/acs.inorgchem.3c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Organic-inorganic hybrid metal halides have attracted widespread attention due to their excellent tunability and versatility. Here, we have selected pyridinium derivatives with different substituent groups or substitution positions as the organic templating cations and obtained six 1D chain-like structures. They are divided into three types: type I (single chain), type II (double chain), and type III (triple chain), with tunable optical band gaps and emission properties. Among them, only (2,4-LD)PbBr3 (2,4-LD = 2,4-lutidine) shows an exciton-dependent emission phenomenon, ranging from strong yellow-white to weak red-white light. By comparing its photoluminescence spectrum with that of its bromate (2,4-LD)Br, it is found that the strong yellow-white emission at 534 nm mainly came from the organic component. Furthermore, through a comparison of the fluorescence spectra and lifetimes of (2,4-LD)PbBr3 and (2-MP)PbBr3 (2-MP = 2-methylpyridine) with similar structures at different temperatures, we confirm that the tunable emission of (2,4-LD)PbBr3 comes from different photoluminescent sources corresponding to organic cations and self-trapped excitons. Density functional theory calculations further reveal that (2,4-LD)PbBr3 has a stronger interaction between organic and inorganic components compared to (2-MP)PbBr3. This work highlights the importance of organic templating cations in hybrid metal halides and the new functionalities associated with them.
Collapse
Affiliation(s)
- Runan Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chen Sun
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaohua Cheng
- Advanced Research Institute of Multidisciplinary Science, Schools of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Beijing Institute of Technology (BIT), Beijing 100081, China
| | - Yufan Lin
- Advanced Research Institute of Multidisciplinary Science, Schools of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Beijing Institute of Technology (BIT), Beijing 100081, China
| | - Jiaqian Zhou
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jun Yin
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Bin-Bin Cui
- Advanced Research Institute of Multidisciplinary Science, Schools of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Beijing Institute of Technology (BIT), Beijing 100081, China
| | - Lingling Mao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|