1
|
Yu N, Liu X, Kuai L. Natural biomass derived single-atom catalysts for energy and environmental applications. Int J Biol Macromol 2024; 276:133694. [PMID: 38992538 DOI: 10.1016/j.ijbiomac.2024.133694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/11/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
Single atom catalysts (SACs) excel in various chemical processes, including electrocatalysis and industrial chemistry, due to their efficiency. In contrast to chemically synthesized precursors, biomass offers a greener and more cost-effective approach for SACs fabrication. To date, over forty types of SACs have been synthesized using natural sources like starch, cellulose, lignin, hemicellulose, proteins, and chitin. These catalysts incorporate metals such as Fe, Co, Ni, Cu, Zn, Mn, and Pt. This review concentrates on the preparation of SACs from biomass, exploring innovative techniques and their extensive applications in energy conversion and environmental conservation, including but not limited to reactions involving oxygen reduction, oxygen evolution, and hydrogen evolution. It also discusses current challenges and prospective advancements in this domain. This paper updates and expands on the knowledge of SACs derived from biomass, aiming to foster the development of more effective, low-cost catalyst materials from natural sources.
Collapse
Affiliation(s)
- Nan Yu
- College of Chemistry and Materials Science, the Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Wuhu 241002, China; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Xin Liu
- College of Chemistry and Materials Science, the Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Wuhu 241002, China
| | - Long Kuai
- School of Chemical and Environmental Engineering, Key Laboratory of Production and Conversion of Green Hydrogen, Anhui Polytechnic University, Wuhu 241000, China.
| |
Collapse
|
2
|
Chen J, Guo S, Wang L, Liu S, Wang H, Zhao Q. Atomic Molybdenum Nanomaterials for Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401019. [PMID: 38757438 DOI: 10.1002/smll.202401019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/07/2024] [Indexed: 05/18/2024]
Abstract
As a sustainable energy technology, electrocatalytic energy conversion requires electrocatalysts, which greatly motivates the exploitation of high-performance electrocatalysts based on nonprecious metals. Molybdenum-based nanomaterials have demonstrated promise as electrocatalysts because of their unique physiochemical and electronic properties. Among them, atomic Mo catalysts, also called Mo-based single-atom catalysts (Mo-SACs), have the most accessible active sites and tunable microenvironments and are thrivingly explored in various electrochemical conversion reactions. A timely review of such rapidly developing topics is necessary to provide guidance for further exploration of optimized Mo-SACs toward electrochemical energy technologies. In this review, recent advances in the synthetic strategies for Mo-SACs are highlighted, focusing on the microenvironment engineering of Mo atoms. Then, the representative achievements of their applications in various electrocatalytic reactions involving the N2, H2O, and CO2 cycles are summarized by combining experimental and computational results. Finally, prospects for the future development of Mo-SACs in electrocatalysis are provided and the key challenges that require further investigation and optimization are highlighted.
Collapse
Affiliation(s)
- Jianmei Chen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Shanlu Guo
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Hao Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, China
| | - Qiang Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| |
Collapse
|
3
|
Li M, Sun G, Wang Z, Zhang X, Peng J, Jiang F, Li J, Tao S, Liu Y, Pan Y. Structural Design of Single-Atom Catalysts for Enhancing Petrochemical Catalytic Reaction Process. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313661. [PMID: 38499342 DOI: 10.1002/adma.202313661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Petroleum, as the "lifeblood" of industrial development, is the important energy source and raw material. The selective transformation of petroleum into high-end chemicals is of great significance, but still exists enormous challenges. Single-atom catalysts (SACs) with 100% atom utilization and homogeneous active sites, promise a broad application in petrochemical processes. Herein, the research systematically summarizes the recent research progress of SACs in petrochemical catalytic reaction, proposes the role of structural design of SACs in enhancing catalytic performance, elucidates the catalytic reaction mechanisms of SACs in the conversion of petrochemical processes, and reveals the high activity origins of SACs at the atomic scale. Finally, the key challenges are summarized and an outlook on the design, identification of active sites, and the appropriate application of artificial intelligence technology is provided for achieving scale-up application of SACs in petrochemical process.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Guangxun Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zhidong Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xin Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiatian Peng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Fei Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Junxi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Shu Tao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
4
|
Zhang P, Chen HC, Zhu H, Chen K, Li T, Zhao Y, Li J, Hu R, Huang S, Zhu W, Liu Y, Pan Y. Inter-site structural heterogeneity induction of single atom Fe catalysts for robust oxygen reduction. Nat Commun 2024; 15:2062. [PMID: 38453927 PMCID: PMC10920901 DOI: 10.1038/s41467-024-46389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
Metal-nitrogen-carbon catalysts with hierarchically dispersed porosity are deemed as efficient geometry for oxygen reduction reaction (ORR). However, catalytic performance determined by individual and interacting sites originating from structural heterogeneity is particularly elusive and yet remains to be understood. Here, an efficient hierarchically porous Fe single atom catalyst (Fe SAs-HP) is prepared with Fe atoms densely resided at micropores and mesopores. Fe SAs-HP exhibits robust ORR performance with half-wave potential of 0.94 V and turnover frequency of 5.99 e-1s-1site-1 at 0.80 V. Theoretical simulations unravel a structural heterogeneity induced optimization, where mesoporous Fe-N4 acts as real active centers as a result of long-range electron regulation by adjacent microporous sites, facilitating O2 activation and desorption of key intermediate *OH. Multilevel operando characterization results identify active Fe sites undergo a dynamic evolution from basic Fe-N4 to active Fe-N3 under working conditions. Our findings reveal the structural origin of enhanced intrinsic activity for hierarchically porous Fe-N4 sites.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Hsiao-Chien Chen
- Center for Reliability Science and Technologies, Chang Gung University, Taoyuan, 33302, Taiwan
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
| | - Houyu Zhu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Kuo Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Tuya Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yilin Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiaye Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Ruanbo Hu
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Siying Huang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Wei Zhu
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China.
| |
Collapse
|
5
|
Liu C, He X, Li J, Ma J, Yue J, Wang Z, Chen M. Selective electrophilic attack towards organic micropollutants with superior Fenton-like activity by biochar-supported cobalt single-atom catalyst. J Colloid Interface Sci 2024; 657:155-168. [PMID: 38035418 DOI: 10.1016/j.jcis.2023.11.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
The global shortage of freshwater and inadequate supply of clean water have necessitated the implementation of robust technologies for wastewater purification, and Fenton-like chemistry is a highly-promising approach. However, realizing the rapid Fenton-like chemistry for high-efficiency degradation of organic micropollutants (OMs) remains challenging. Herein, one novel system was constructed by a Co single-atom catalyst activating peroxymonosulfate (PMS), and the optimal system (SA-Co-NBC-0.2/PMS) achieved unprecedented catalytic performance towards a model OM [Iohexol (IOH)], i.e., almost 100% decay ratio in only 10 min (the observed rate constant: 0.444 min-1) with high electrophilic species 1O2 (singlet oxygen) generation. Theoretical calculations unveiled that Co-N4 sites preferred to adsorb the terminal-O of PMS (more negative adsorption energy than other O sites: -32.67 kcal/mol), promoting the oxidation of PMS to generate 1O2. Iodine (I)23 (0.1097), I24 (0.1154) and I25 (0.0898) on IOH with higher f- electrophilic values were thus identified as the main attack sites. Furthermore, 16S ribosomal RNA high-throughput sequencing and quantitative structure-activity relationship analysis illustrated the environmentally-benign property of the SA-Co-NBC-0.2 and the tapering ecological risk during IOH degradation process. Significantly, this work comprehensively checked the competence of the SA-Co-NBC-0.2/PMS system for organics abatement in practical wastewater.
Collapse
Affiliation(s)
- Chen Liu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Xinxia He
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Jinglu Li
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Jun Ma
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Junpeng Yue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ziwei Wang
- Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Ming Chen
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
6
|
Zhao Y, Chen HC, Ma X, Li J, Yuan Q, Zhang P, Wang M, Li J, Li M, Wang S, Guo H, Hu R, Tu KH, Zhu W, Li X, Yang X, Pan Y. Vacancy Defects Inductive Effect of Asymmetrically Coordinated Single-Atom Fe─N 3 S 1 Active Sites for Robust Electrocatalytic Oxygen Reduction with High Turnover Frequency and Mass Activity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2308243. [PMID: 38102967 DOI: 10.1002/adma.202308243] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/03/2023] [Indexed: 12/17/2023]
Abstract
The development of facile, efficient synthesis method to construct low-cost and high-performance single-atom catalysts (SACs) for oxygen reduction reaction (ORR) is extremely important, yet still challenging. Herein, an atomically dispersed N, S co-doped carbon with abundant vacancy defects (NSC-vd) anchored Fe single atoms (SAs) is reported and a vacancy defects inductive effect is proposed for promoting electrocatalytic ORR. The optimized catalyst featured of stable Fe─N3 S1 active sites exhibits excellent ORR activity with high turnover frequency and mass activity. In situ Raman, attenuated total reflectance surface enhanced infrared absorption spectroscopy reveal the Fe─N3 S1 active sites exhibit different kinetic mechanisms in acidic and alkaline solutions. Operando X-ray absorption spectra reveal the ORR activity of Fe SAs/NSC-vd catalyst in different electrolyte is closely related to the coordination structure. Theoretical calculation reveals the upshifted d band center of Fe─N3 S1 active sites facilitates the adsorption of O2 and accelerates the kinetics process of *OH reduction. The abundant vacancy defects around the Fe─N3 S1 active sites balance the OOH* formation and *OH reduction, thus synergetically promoting the electrocatalytic ORR process.
Collapse
Affiliation(s)
- Yilin Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Hsiao-Chien Chen
- Center for Reliability Science and Technologies, Center for Sustainability and Energy Tecnhologies, Chang Gung University, Taoyuan, 33302, Taiwan
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
| | - Xuelu Ma
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, P. R. China
| | - Jiaye Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Qing Yuan
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Peng Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Minmin Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Junxi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Shifu Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Han Guo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Ruanbo Hu
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Kun-Hua Tu
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
| | - Wei Zhu
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xuning Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xuan Yang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| |
Collapse
|
7
|
Wang X, Ma H, Wang D, Wang L, Yang Y, Han J, Qu W, Yang L, Wang S, Tian Z. Slurry-Phase Hydrogenation of Different Asphaltenes to Liquid Fuels on Dispersed MoS 2 Nanocatalysts. ACS OMEGA 2023; 8:16384-16394. [PMID: 37179647 PMCID: PMC10173321 DOI: 10.1021/acsomega.3c01174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
Asphaltene, the most complex and recalcitrant fraction of heavy oil, was investigated in this study to gain new insights into its structure and reactivity. Two types of asphaltenes, ECT-As and COB-As, were extracted from ethylene cracking tar (ECT) and Canada's oil sands bitumen (COB), respectively, and used as reactants for slurry-phase hydrogenation. Characterization of ECT-As and COB-As was carried out by a combination of techniques, including XRD, elemental analysis, simulated distillation, SEM, TEM, NMR, and FT-IR, to gain insights into their composition and structure. A dispersed MoS2 nanocatalyst was used to study the reactivity of ECT-As and COB-As under hydrogenation conditions. The results showed that under optimal catalytic conditions, the vacuum residue content of hydrogenation products could be reduced to less than 20%, and the products contained over 50% light components (gasoline and diesel oil), indicating that ECT-As and COB-As were effectively upgraded. The characterization results indicated that ECT-As contained a higher aromatic carbon content, shorter alkyl side chains, fewer heteroatoms, and less highly condensed aromatics than COB-As. The light components (gasoline and diesel oil) of ECT-As hydrogenation products mainly consisted of aromatic compounds with 1-4 rings, with the alkyl chains mainly composed of C1-C2, while light components of COB-As hydrogenation products were mainly composed of aromatic compounds with 1-2 rings and C11-C22 paraffins. The characterization of ECT-As and COB-As and their hydrogenation products revealed that ECT-As was an "archipelago type" asphaltene, composed of multiple small aromatic nuclei interconnected through short alkyl chains, while COB-As was an "island type" asphaltene, with long alkyl chains connected to aromatic nuclei. It is suggested that the structure of asphaltene has a significant impact on both its reactivity and product distribution.
Collapse
Affiliation(s)
- Xiaoping Wang
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Huaijun Ma
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Donge Wang
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Lin Wang
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Yiwen Yang
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Jianqiang Han
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Wei Qu
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Lin Yang
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shuaiqi Wang
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhijian Tian
- State
Key Laboratory of Catalysis, Dalian National Laboratory for Clean
Energy, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, P.R. China
| |
Collapse
|