1
|
Liu X, He X, Zhang C, Song Y, Xie S, Liu C, Liu P, Zhang Y, Mu Y, Liu J. Characteristics and sources of peroxyacetyl nitrate (PAN) in the rural North China Plain: Results from 1-year continuous observations. J Environ Sci (China) 2024; 138:719-731. [PMID: 38135434 DOI: 10.1016/j.jes.2023.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 12/24/2023]
Abstract
Peroxyacetyl nitrate (PAN) is an important photochemical pollutant in the troposphere, whereas long-term measurements are scarce in rural areas in North China Plain (NCP), resulting in unclear seasonal variations and sources of PAN in rural NCP. In this study, we conducted a 1-year observation of PAN during 2021-2022 at the rural NCP site. The average concentrations of PAN were 1.10, 0.75, 0.65, and 0.88 ppbv in spring, summer, autumn, and winter, respectively, with a 1-year average of 0.81 ± 0.60 ppbv. Calculations indicate that the loss of PAN through thermal decomposition in summer accounts for 43.2% of the total formed PAN, which is an important reason for the low concentration of PAN in summer. We speculate that since the correlation between PAN and O3 in winter is significantly lower than that in other seasons, the observed regional transport of PAN cannot be ignored in winter. Through budget analysis, regional transport accounted for 12.8% and 55.9% of the observed PAN on the spring and winter pollution days, respectively, which showed that regional transport played key roles during the photochemical pollution of the rural NCP in winter. The potential source contribution function revealed that the transported PAN mainly comes from southern Hebei in spring. In winter, the transported PAN was mainly from Langfang, Hengshui, and southern Beijing. Our findings may aid in understanding PAN variations in different seasons in rural areas and highlight the impact of regional transport on the PAN budget.
Collapse
Affiliation(s)
- Xin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaowei He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenglong Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifei Song
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyang Xie
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengtang Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujing Mu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junfeng Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Liu L, Wang X, Chen J, Xue L, Wang W, Wen L, Li D, Chen T. Understanding unusually high levels of peroxyacetyl nitrate (PAN) in winter in Urban Jinan, China. J Environ Sci (China) 2018; 71:249-260. [PMID: 30195683 DOI: 10.1016/j.jes.2018.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Peroxyacetyl nitrate (PAN), as a major secondary pollutant, has gained increasing worldwide attentions, but relevant studies in China are still quite limited. During winter of 2015 to summer of 2016, the ambient levels of PAN were measured continuously by an automatic gas chromatograph equipped with an electron capture detector (GC-ECD) analyzer at an urban site in Jinan (China), with related parameters including concentrations of O3, NO, NO2, PM2.5, HONO, the photolysis rate constant of NO2 and meteorological factors observed concurrently. The mean and maximum values of PAN concentration were (1.89 ± 1.42) and 9.61 ppbv respectively in winter, and (2.54 ± 1.44) and 13.47 ppbv respectively in summer. Unusually high levels of PAN were observed during severe haze episodes in winter, and the formation mechanisms of them were emphatically discussed. Study showed that high levels of PAN in winter were mainly caused by local accumulation and strong photochemical reactions during haze episodes, while mass transport played only a minor role. Accelerated photochemical reactions (compared to winter days without haze) during haze episodes were deduced by the higher concentrations but shorter lifetimes of PAN, which was further supported by the sufficient solar radiation in the photolysis band along with the high concentrations of precursors (NO2, VOCs) and HONO during haze episodes. In addition, significant PAN accumulation during calm weather of haze episodes was verified by meteorological data.
Collapse
Affiliation(s)
- Lu Liu
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China
| | - Xinfeng Wang
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China
| | - Jianmin Chen
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China; Institute for Climate and Global Change Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210008, China.
| | - Likun Xue
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China; Institute for Climate and Global Change Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210008, China
| | - Wenxing Wang
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China
| | - Liang Wen
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China
| | - Dandan Li
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China
| | - Tianshu Chen
- Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Ji'nan 250100, China
| |
Collapse
|
3
|
Fischer EV, Jacob DJ, Yantosca RM, Sulprizio MP, Millet DB, Mao J, Paulot F, Singh HB, Roiger A, Ries L, Talbot R, Dzepina K, Pandey Deolal S. Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution. ATMOSPHERIC CHEMISTRY AND PHYSICS 2014; 14:2679-2698. [PMID: 33758588 PMCID: PMC7983850 DOI: 10.5194/acp-14-2679-2014] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Peroxyacetyl nitrate (PAN) formed in the atmospheric oxidation of non-methane volatile organic compounds (NMVOCs) is the principal tropospheric reservoir for nitrogen oxide radicals (NOx = NO + NO2). PAN enables the transport and release of NOx to the remote troposphere with major implications for the global distributions of ozone and OH, the main tropospheric oxidants. Simulation of PAN is a challenge for global models because of the dependence of PAN on vertical transport as well as complex and uncertain NMVOC sources and chemistry. Here we use an improved representation of NMVOCs in a global 3-D chemical transport model (GEOS-Chem) and show that it can simulate PAN observations from aircraft campaigns worldwide. The immediate carbonyl precursors for PAN formation include acetaldehyde (44% of the global source), methylglyoxal (30 %), acetone (7 %), and a suite of other isoprene and terpene oxidation products (19 %). A diversity of NMVOC emissions is responsible for PAN formation globally including isoprene (37 %) and alkanes (14 %). Anthropogenic sources are dominant in the extratropical Northern Hemisphere outside the growing season. Open fires appear to play little role except at high northern latitudes in spring, although results are very sensitive to plume chemistry and plume rise. Lightning NOx is the dominant contributor to the observed PAN maximum in the free troposphere over the South Atlantic.
Collapse
Affiliation(s)
- E. V. Fischer
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
| | - D. J. Jacob
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - R. M. Yantosca
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - M. P. Sulprizio
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - D. B. Millet
- Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN, USA
| | - J. Mao
- Princeton University, GFDL, Princeton, NJ, USA
| | - F. Paulot
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
| | - H. B. Singh
- NASA Ames Research Center, Moffett Field, CA, USA
| | - A. Roiger
- Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
| | - L. Ries
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
| | - R.W. Talbot
- Federal Environment Agency, GAW Global Station Zugspitze/Hohenpeissenberg, Zugspitze, Germany
| | - K. Dzepina
- Department of Chemistry, Michigan Technological University, Houghton, MI, USA
| | | |
Collapse
|
4
|
Zhang H, Xu X, Lin W, Wang Y. Wintertime peroxyacetyl nitrate (PAN) in the megacity Beijing: role of photochemical and meteorological processes. J Environ Sci (China) 2014; 26:83-96. [PMID: 24649694 DOI: 10.1016/s1001-0742(13)60384-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Previous measurements of peroxyacetyl nitrate (PAN) in Asian megacities were scarce and mainly conducted for relative short periods in summer. Here, we present and analyze the measurements of PAN, O3, NO(x), etc., made at an urban site (CMA) in Beijing from 25 January to 22 March 2010. The hourly concentration of PAN averaged 0.70 x 10(-9) mol/mol (0.23 x 10(-9) -3.51 x 10(-9) mol/mol) and was well correlated with that of NO2 but not O3, indicating that the variations of the winter concentrations of PAN and 03 in urban Beijing are decoupled with each other. Wind conditions and transport of air masses exert very significant impacts on O3, PAN, and other species. Air masses arriving at the site originated either from the boundary layer over the highly polluted N-S-W sector or from the free troposphere over the W-N sector. The descending free-tropospheric air was rich in O3, with an average PAN/O3 ratio smaller than 0.031, while the boundary layer air over the polluted sector contained higher levels of PAN and primary pollutants, with an average PAN/O3 ratio of 0.11. These facts related with transport conditions can well explain the observed PAN-O3 decoupling. Photochemical production is important to PAN in the winter over Beijing. The concentration of the peroxyacetyl (PA) radical was estimated to be in the range of 0.0014 x 10(-12) -0.0042 x 10(-12) mol/mol. The contributions of the formation reaction and thermal decomposition to PAN's variation were calculated and found to be significant even in the colder period in air over Beijing, with the production exceeding the decomposition.
Collapse
|
5
|
Zhang G, Mu Y, Liu J, Zhang C, Zhang Y, Zhang Y, Zhang H. Seasonal and diurnal variations of atmospheric peroxyacetyl nitrate, peroxypropionyl nitrate, and carbon tetrachloride in Beijing. J Environ Sci (China) 2014; 26:65-74. [PMID: 24649692 DOI: 10.1016/s1001-0742(13)60382-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Atmospheric peroxyacetyl nitrate (PAN), peroxypropionyl nitrate (PPN), and carbon tetrachloride (CCl4) were measured from September 2010 to August 2011 in Beijing. PAN exhibited low values from mid-autumn to early spring (October to March) with monthly average concentrations ranging from 0.28 to 0.73 ppbV, and increased from early spring to summer (March to August), ranging from 1.37-3.79 ppbV. The monthly variation of PPN was similar to PAN, with low values (below detection limit to 0.18 ppbV) from mid-autumn to early spring, and a monthly maximum in September (1.14 ppbV). The monthly variation of CCl4 was tightly related to the variation of temperature, exhibiting a minimum in winter (69.3 pptV) and a maximum of 180.6 pptV in summer. Due to weak solar intensity and short duration, PAN and O3 showed no distinct diurnal patterns from morning to night during winter, whereas for other seasons, they both exhibited maximal values in the late afternoon (ca. 15:00 to 16:00 local time) and minimal values during early morning and midnight. Good linear correlations between PAN and PPN were found in autumn (R = 0.91), spring (R = 0.94), and summer (R = 0.81), with slopes of 0.130, 0.222, and 0.133, respectively, suggesting that anthropogenic hydrocarbons dominated the photochemical formation of PANs in Beijing. Positive correlation between PAN and O3 in summer with the low slopes (deltaO3/deltaPAN) ranging from 9.92 to 18.0 indicated serious air pollution in Beijing, and strong negative correlation in winter reflected strong O3 consumption by NO titration and less thermal decompositin of PAN.
Collapse
|
6
|
Lee JB, Yoon JS, Jung K, Eom SW, Chae YZ, Cho SJ, Kim SD, Sohn JR, Kim KH. Peroxyacetyl nitrate (PAN) in the urban atmosphere. CHEMOSPHERE 2013; 93:1796-1803. [PMID: 23838043 DOI: 10.1016/j.chemosphere.2013.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 05/25/2013] [Accepted: 06/04/2013] [Indexed: 06/02/2023]
Abstract
Peroxyacetyl nitrate (PAN) in air has been well known as the indicator of photochemical smog due to its frequent occurrences in Seoul metropolitan area. This study was implemented to assess the distribution characteristics of atmospheric PAN in association with relevant parameters measured concurrently. During a full year period in 2011, PAN was continuously measured at hourly intervals at two monitoring sites, Gwang Jin (GJ) and Gang Seo (GS) in the megacity of Seoul, South Korea. The annual mean concentrations of PAN during the study period were 0.64±0.49 and 0.57±0.46 ppb, respectively. The seasonal trends of PAN generally exhibited dual peaks in both early spring and fall, regardless of sites. Their diurnal trends were fairly comparable to each other. There was a slight time lag (e.g., 1 h) in the peak occurrence pattern between O3 and PAN, as the latter trended to peak after the maximum UV irradiance period (16:00 (GJ) and 17:00 (GS)). The concentrations of PAN generally exhibited strong correlations with particulates. The results of this study suggest that PAN concentrations were affected sensitively by atmospheric stability, the wet deposition of NO2, wind direction, and other factors.
Collapse
Affiliation(s)
- Jun-Bok Lee
- Seoul Metropolitan Government Institute of Public Health and Environment, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Cape JN. The Use of Passive Diffusion Tubes for Measuring Concentrations of Nitrogen Dioxide in Air. Crit Rev Anal Chem 2009. [DOI: 10.1080/10408340903001375] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|