1
|
Sweeck L, Vives I Batlle J, Vanhoudt N. Assessment of radiation dose to people and wildife inhabiting the Grote Nete catchment in Belgium. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 273:107395. [PMID: 38325250 DOI: 10.1016/j.jenvrad.2024.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
We evaluate the impact of the radiological contamination of the Grote Nete catchment in Belgium to people and non-human biota. This region has received effluents from the phosphate and nuclear industries via tributaries of the Grote Nete river in past decades, resulting in the presence of radionuclides such as 241Am, 60Co, 137Cs, 40K, 210Pb, 238Pu, 239,240Pu, 226Ra, 228Ra, 228Th, 232Th, 234U, 235U and 238U. During the period 2016-2021, we measured these radionuclides in the water column, the bed sediment and riverbanks. Additionally, we carried out radon measurements on the riverbanks in 2022. Based on these measurements, the dose rates to people were calculated for different potential exposure scenarios, using the SCK CEN biosphere tool. We also performed an assessment of exposure of ionising radiation to non-human biota (including 222Rn and its daughters) using the ERICA Tool. We observed three types of areas at the Grote Nete riverbank: (a) a lower category exposure with 226Ra concentrations reflecting purely Belgian background values; (b) a middle category with enhanced 226Ra, mainly adsorbed on clay minerals and (c) an upper category extending to maximum values in the order of 103 Bq kg-1. The main component of the dose rate for terrestrial and aquatic organisms is 226Ra followed by 210Pb (terrestrial) or 228Ra, (aquatic). The anthropogenic vector of the contamination (40K, 60Co, 90Sr, 137Cs, 228Th, 232Th, 234,235,238U, 238,239Pu, 241Am) makes a negligible contribution to dose. Overall, the Grote Nete wildlife is not under significant risk from exposure to soil or water-borne radionuclides and radon emanating from the soil, even if the ERICA benchmark of 10 μGy h-1 is occasionally exceeded for 226Ra, 210Pb or 228Ra, because exposures are below the levels at which effects are known to occur. For people, radon inhalation is the main exposure pathway and exposures can reach 1 mSv y-1 for hypothetical residents living at the riverbanks and remaining most of their time in the area, but it can be expected that exposures are much lower at increasing distances from the river. It is concluded that neither people nor the environment are at any significant radiological risk from this situation.
Collapse
Affiliation(s)
- L Sweeck
- Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium.
| | - J Vives I Batlle
- Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
| | - N Vanhoudt
- Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
| |
Collapse
|
2
|
Beresford NA, Beaugelin-Seiller K, Barnett CL, Brown J, Doering C, Caffrey E, Johansen MP, Melintescu A, Ruedig E, Vandenhove H, Vives I Batlle J, Wood MD, Yankovich TL, Copplestone D. Ensuring robust radiological risk assessment for wildlife: insights from the International Atomic Energy Agency EMRAS and MODARIA programmes. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:020512. [PMID: 35502472 DOI: 10.1088/1361-6498/ac6043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
In response to changing international recommendations and national requirements, a number of assessment approaches, and associated tools and models, have been developed over the last circa 20 years to assess radiological risk to wildlife. In this paper, we summarise international intercomparison exercises and scenario applications of available radiological assessment models for wildlife to aid future model users and those such as regulators who interpret assessments. Through our studies, we have assessed the fitness for purpose of various models and tools, identified the major sources of uncertainty and made recommendations on how the models and tools can best be applied to suit the purposes of an assessment. We conclude that the commonly used tiered or graded assessment tools are generally fit for purpose for conducting screening-level assessments of radiological impacts to wildlife. Radiological protection of the environment (or wildlife) is still a relatively new development within the overall system of radiation protection and environmental assessment approaches are continuing to develop. Given that some new/developing approaches differ considerably from the more established models/tools and there is an increasing international interest in developing approaches that support the effective regulation of multiple stressors (including radiation), we recommend the continuation of coordinated international programmes for model development, intercomparison and scenario testing.
Collapse
Affiliation(s)
- N A Beresford
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP, United Kingdom
- School of Science, Engineering and Environment, University of Salford, Manchester, M5 4WT, United Kingdom
| | - K Beaugelin-Seiller
- Institut de Radioprotection et de Sûreté Nucléaire, PSE/ENV/SRTE, Centre de Cadarache, Saint-Pual-Les-Durance, BP3 13115, France
| | - C L Barnett
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP, United Kingdom
| | - J Brown
- Norwegian Radiation and Nuclear Safety Authority (DSA), PO Box 55, No-1332 Østerås, Norway
| | - C Doering
- Environmental Research Institute of the Supervising Scientist, Darwin, NT, Australia
| | - E Caffrey
- Radian Scientific, LLC, Huntsville, AL, United States of America
| | - M P Johansen
- Australian Nuclear Science and Technology Organisation, Sydney, Australia
| | - A Melintescu
- 'Horia Hulubei' National Institute for Physics and Nuclear Engineering, 30 Reactorului St., POB MG-6, Magurele, Bucharest, RO-077125, Romania
| | - E Ruedig
- BHP, 201 CW Santa Fe Av., Grants, NM 87404, United States of America
| | - H Vandenhove
- Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol, Belgium
| | - J Vives I Batlle
- Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol, Belgium
| | - M D Wood
- School of Science, Engineering and Environment, University of Salford, Manchester, M5 4WT, United Kingdom
| | - T L Yankovich
- International Atomic Energy Agency, Assessment and Management of Environmental Releases Unit, PO Box 100, Vienna, 1400, Austria
| | - D Copplestone
- Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| |
Collapse
|
3
|
Ćujić M, Janković Mandić L, Petrović J, Dragović R, Đorđević M, Đokić M, Dragović S. Radon-222: environmental behavior and impact to (human and non-human) biota. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:69-83. [PMID: 31955264 DOI: 10.1007/s00484-020-01860-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/24/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
As an inert radioactive gas, 222Rn could be easily transported to the atmosphere via emanation, migration, or exhalation. Research measurements pointed out that 222Rn activity concentration changes during the winter and summer months, as well as during wet and dry season periods. Changes in radon concentration can affect the atmospheric electric field. At the boundary layer near the ground, short-lived daughters of 222Rn can be used as natural tracers in the atmosphere. In this work, factors controlling 222Rn pathways in the environment and its levels in soil gas and outdoor air are summarized. 222Rn has a short half-life of 3.82 days, but the dose rate due to radon and its radioactive progeny could be significant to the living beings. Epidemiological studies on humans pointed out that up to 14% of lung cancers are induced by exposure to low and moderate concentrations of radon. Animals that breed in ground holes have been exposed to the higher doses due to radiation present in soil air. During the years, different dose-effect models are developed for risk assessment on human and non-human biota. In this work are reviewed research results of 222Rn exposure of human and non-human biota.
Collapse
Affiliation(s)
- Mirjana Ćujić
- University of Belgrade, Vinča Institute of Nuclear Sciences, POB 522, Belgrade, Serbia.
| | | | - Jelena Petrović
- University of Belgrade, Vinča Institute of Nuclear Sciences, POB 522, Belgrade, Serbia
| | - Ranko Dragović
- Department of Geography, University of Niš, Faculty of Sciences and Mathematics, POB 224, Niš, Serbia
| | - Milan Đorđević
- Department of Geography, University of Niš, Faculty of Sciences and Mathematics, POB 224, Niš, Serbia
| | - Mrđan Đokić
- Department of Geography, University of Niš, Faculty of Sciences and Mathematics, POB 224, Niš, Serbia
| | - Snežana Dragović
- University of Belgrade, Vinča Institute of Nuclear Sciences, POB 522, Belgrade, Serbia
| |
Collapse
|
4
|
Doering C, Medley P, Orr B, Urban D. Whole organism to tissue concentration ratios derived from an Australian tropical dataset. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 189:31-39. [PMID: 29573589 DOI: 10.1016/j.jenvrad.2018.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/22/2018] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
Whole organism to tissue concentration ratios (CRwo-tissue) were derived for six wildlife groups (freshwater birds, freshwater bivalves, freshwater fishes, freshwater reptiles, freshwater vascular plants and terrestrial mammals). The wildlife groups and data represented species common to tropical northern Australia. Values of CRwo-tissue were derived for between 6 and 34 elements, depending upon wildlife group. The values were generally similar to international reference values. However, differences for some element-tissue combinations could affect radiation dose estimates for wildlife in certain environmental exposure situations, including uranium mining, where these data are intended to be applied.
Collapse
Affiliation(s)
- Che Doering
- Environmental Research Institute of the Supervising Scientist (ERISS), GPO Box 461, Darwin, NT, 0801, Australia.
| | - Peter Medley
- Environmental Research Institute of the Supervising Scientist (ERISS), GPO Box 461, Darwin, NT, 0801, Australia
| | - Blake Orr
- Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), 619 Lower Plenty Road, Yallambie, VIC, 3085, Australia
| | - David Urban
- Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), 619 Lower Plenty Road, Yallambie, VIC, 3085, Australia
| |
Collapse
|
5
|
Ćujić M, Dragović S. Assessment of dose rate to terrestrial biota in the area around coal fired power plant applying ERICA tool and RESRAD BIOTA code. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 188:108-114. [PMID: 28964597 DOI: 10.1016/j.jenvrad.2017.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
This paper presents the environmental radiation risk assessment based on two software program approaches ERICA Tool (version 1.2) and RESRAD BIOTA (version 1.5) to estimate dose rates to terrestrial biota in the area around the largest coal fired power plant in Serbia. For dose rate assessment software's default reference animals and plants and the best estimated values of activity concentrations of 238U, 234U, 234Th, 232Th, 230Th, 226Ra, 210Pb, 210Po, 137Cs in soil were used. Both approaches revealed the highest contribution to the internal dose rate due to 226Ra and 210Po, while 137Cs contributed the most to the external dose rate. In the investigated area total dose rate to biota derived using ERICA Tool ranged from 0.3 to 14.4 μGy h-1. The natural radionuclides exhibited significantly higher contribution to the total dose rate than the artificial one. In the investigated area, only dose rate for lichens and bryophytes exceeded ERICA Tool screening value of total dose rate of 10 μGy h-1 suggested as confident that environmental risks are negligible. The assessed total dose rates for reference animals and plants using RESRAD BIOTA were found to be 7 and 3 μGy h-1, respectively. In RESRAD BIOTA - Level 3, 10 species (Lumbricus terrestris, Rana lessonae, Sciurus vulgaris, Anas platyrhynchos, Lepus europaeus, Vulpes vulpes, Capreolus capreolus, Suss crofa, Quercu srobur, Tilia spp.) representative for the study area were modeled. Among them the highest total dose rate (4.5 μGy h-1) was obtained for large mammals. Differences in the predicted dose rates to biota using the two software programs are the consequence of the difference in the values of transfer parameters used to calculate activity concentrations in biota. Doses of ionizing radiation estimated in this study will not exhibit deterministic effects at the population level. Thus, the obtained results indicate no significant radiation impact of coal fired power plant operation on terrestrial biota. This paper confirms the use ERICA Tool and RESRAD BIOTA softwares as flexible and effective means of radiation impact assessment.
Collapse
Affiliation(s)
- Mirjana Ćujić
- University of Belgrade, Vinča Institute of Nuclear Sciences, PO Box 522, 11001 Belgrade, Serbia.
| | - Snežana Dragović
- University of Belgrade, Vinča Institute of Nuclear Sciences, PO Box 522, 11001 Belgrade, Serbia
| |
Collapse
|
6
|
Vives I Batlle J, Ulanovsky A, Copplestone D. A method for assessing exposure of terrestrial wildlife to environmental radon ( 222Rn) and thoron ( 220Rn). THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:569-577. [PMID: 28672245 DOI: 10.1016/j.scitotenv.2017.06.154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
A method is presented to calculate radiation dose rates arising from radon, thoron and their progeny to non-human biota in the terrestrial environment. The method improves on existing methodologies for the assessment of radon to biota by using a generalised allometric approach to model respiration, calculating dose coefficients for the ICRP reference animals and plants, and extending the approach to cover thoron in addition to radon-derived isotopes. The method is applicable to a range of environmental situations involving these radionuclides in wildlife, with an envisaged application being to study the impact of human activities, which bring NORM radionuclides to the biosphere. Consequently, there is a need to determine whether there is an impact on non-human biota from exposure to anthropogenically enhanced radionuclides.
Collapse
Affiliation(s)
| | - Alexander Ulanovsky
- Institute of Radiation Protection, Helmholtz Zentrum München - German Research Centre for Environmental Health, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | | |
Collapse
|
7
|
Stark K, Goméz-Ros JM, Vives I Batlle J, Lindbo Hansen E, Beaugelin-Seiller K, Kapustka LA, Wood MD, Bradshaw C, Real A, McGuire C, Hinton TG. Dose assessment in environmental radiological protection: State of the art and perspectives. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2017; 175-176:105-114. [PMID: 28505478 DOI: 10.1016/j.jenvrad.2017.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 04/09/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Exposure to radiation is a potential hazard to humans and the environment. The Fukushima accident reminded the world of the importance of a reliable risk management system that incorporates the dose received from radiation exposures. The dose to humans from exposure to radiation can be quantified using a well-defined system; its environmental equivalent, however, is still in a developmental state. Additionally, the results of several papers published over the last decade have been criticized because of poor dosimetry. Therefore, a workshop on environmental dosimetry was organized by the STAR (Strategy for Allied Radioecology) Network of Excellence to review the state of the art in environmental dosimetry and prioritize areas of methodological and guidance development. Herein, we report the key findings from that international workshop, summarise parameters that affect the dose animals and plants receive when exposed to radiation, and identify further research needs. Current dosimetry practices for determining environmental protection are based on simple screening dose assessments using knowledge of fundamental radiation physics, source-target geometry relationships, the influence of organism shape and size, and knowledge of how radionuclide distributions in the body and in the soil profile alter dose. In screening model calculations that estimate whole-body dose to biota the shapes of organisms are simply represented as ellipsoids, while recently developed complex voxel phantom models allow organ-specific dose estimates. We identified several research and guidance development priorities for dosimetry. For external exposures, the uncertainty in dose estimates due to spatially heterogeneous distributions of radionuclide contamination is currently being evaluated. Guidance is needed on the level of dosimetry that is required when screening benchmarks are exceeded and how to report exposure in dose-effect studies, including quantification of uncertainties. Further research is needed to establish whether and how dosimetry should account for differences in tissue physiology, organism life stages, seasonal variability (in ecology, physiology and radiation field), species life span, and the proportion of a population that is actually exposed. We contend that, although major advances have recently been made in environmental radiation protection, substantive improvements are required to reduce uncertainties and increase the reliability of environmental dosimetry.
Collapse
Affiliation(s)
- Karolina Stark
- Department of Ecology, Environment, and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden.
| | - José M Goméz-Ros
- Spanish Research Centre in Energy, Environment and Technology, CIEMAT, Avenida Complutense 40, 28040 Madrid, Spain
| | - Jordi Vives I Batlle
- Biosphere Impact Studies Unit, Belgian Nuclear Research Centre SCK•CEN, Boeretang 200, 2400 Mol, Belgium
| | - Elisabeth Lindbo Hansen
- Norwegian Radiation Protection Authority, Department of Research, P.O. Box 55, NO-1332 Østerås, Norway; CERAD Centre of Excellence in Environmental Radioactivity, P.O. Box 5003, No-1432 Ås, Norway
| | - Karine Beaugelin-Seiller
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, PRP-ENV, SERIS, LRTE, Cadarache, 13115 Saint Paul Lez Durance Cedex, France
| | | | - Michael D Wood
- School of Environment and Life Sciences, University of Salford, Manchester M5 4WT, UK
| | - Clare Bradshaw
- Department of Ecology, Environment, and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Almudena Real
- Spanish Research Centre in Energy, Environment and Technology, CIEMAT, Avenida Complutense 40, 28040 Madrid, Spain
| | - Corynne McGuire
- Scottish Environment Protection Agency, Strathallan House, Castle Business Park, Stirling FK9 4TZ, UK
| | - Thomas G Hinton
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
| |
Collapse
|
8
|
Brown JE, Alfonso B, Avila R, Beresford NA, Copplestone D, Hosseini A. A new version of the ERICA tool to facilitate impact assessments of radioactivity on wild plants and animals. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 153:141-148. [PMID: 26773508 DOI: 10.1016/j.jenvrad.2015.12.011] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 06/05/2023]
Abstract
A new version of the ERICA Tool (version 1.2) was released in November 2014; this constitutes the first major update of the Tool since release in 2007. The key features of the update are presented in this article. Of particular note are new transfer databases extracted from an international compilation of concentration ratios (CRwo-media) and the modification of 'extrapolation' approaches used to select transfer data in cases where information is not available. Bayesian updating approaches have been used in some cases to draw on relevant information that would otherwise have been excluded in the process of deriving CRwo-media statistics. All of these efforts have in turn led to the requirement to update Environmental Media Concentration Limits (EMCLs) used in Tier 1 assessments. Some of the significant changes with regard to EMCLs are highlighted.
Collapse
Affiliation(s)
- J E Brown
- Norwegian Radiation Protection Authority, Department of Emergency Preparedness and Environmental Radioactivity, Grini næringspark 13 Postbox 55, NO-1332, Østerås, Norway.
| | - B Alfonso
- Facilia AB, Gustavslundsvägen 151C, 167 51, Bromma, Sweden
| | - R Avila
- Facilia AB, Gustavslundsvägen 151C, 167 51, Bromma, Sweden
| | - N A Beresford
- NERC Centre for Ecology & Hydrology, Lancaster Environment Center, Library Av., Bailrigg, Lancaster, LA14AP, UK
| | - D Copplestone
- School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - A Hosseini
- Norwegian Radiation Protection Authority, Department of Emergency Preparedness and Environmental Radioactivity, Grini næringspark 13 Postbox 55, NO-1332, Østerås, Norway
| |
Collapse
|
9
|
Doering C, Bollhöfer A. A soil radiological quality guideline value for wildlife-based protection in uranium mine rehabilitation. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 151 Pt 3:522-529. [PMID: 26350640 DOI: 10.1016/j.jenvrad.2015.08.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 06/05/2023]
Abstract
A soil guideline value for radiological protection of the environment was determined for the impending rehabilitation of Ranger uranium mine in the wet-dry tropics of northern Australia. The guideline value was 1000 Bq kg(-1) of (226)Ra in the proposed waste rock substrate of the rehabilitated landform and corresponded to an above-baseline dose rate of 100 μGy h(-1) to the most highly exposed individuals of the limiting organism. The limiting organism was reptile based on an assessment using site-specific concentration ratio data.
Collapse
Affiliation(s)
- Che Doering
- Environmental Research Institute of the Supervising Scientist (ERISS), GPO Box 461, Darwin, NT 0801, Australia.
| | - Andreas Bollhöfer
- Environmental Research Institute of the Supervising Scientist (ERISS), GPO Box 461, Darwin, NT 0801, Australia
| |
Collapse
|
10
|
Vives I Batlle J, Jones SR, Copplestone D. A method for estimating (41)Ar, (85)(,88)Kr and (131m,133)Xe doses to non-human biota. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2015; 144:152-161. [PMID: 25863225 DOI: 10.1016/j.jenvrad.2015.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 06/04/2023]
Abstract
A method is presented for estimating (41)Ar, (85,88)Kr and (131m,133)Xe dose rates to terrestrial wildlife without having to resort to comparisons with analogue radionuclides. The approach can be used to calculate the dose rates arising from external exposures to given ambient air concentrations of these isotopes. Dose conversion coefficient (DCC) values for a range of representative organisms are calculated, using a Monte Carlo approach to generate absorbed fractions based on representing animals as reference ellipsoid geometries. Plume immersion is the main component of the total DCC. DCC values calculated for a human-sized organism are compared with human dose conversion factors from ICRP Publication 119, demonstrating the consistency of the biota approach with that for humans. An example of application is provided for hypothetical nuclear power plant atmospheric discharges with associated exposures to birds and insects. In this example, the dose rates appear to be dominated by (133)Xe and (88)Kr, respectively. The biota considered would be protected from the effects of noble gas radiation from a population protection perspective.
Collapse
Affiliation(s)
- J Vives I Batlle
- Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol, Belgium.
| | - S R Jones
- Dalton Nuclear Institute, University of Manchester, UK
| | - D Copplestone
- School of Biological and Environmental Sciences, University of Stirling, UK
| |
Collapse
|
11
|
Vandenhove H, Vives i Batlle J, Sweeck L. Potential radiological impact of the phosphate industry on wildlife. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2015; 141:14-23. [PMID: 25500062 DOI: 10.1016/j.jenvrad.2014.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/22/2014] [Accepted: 11/03/2014] [Indexed: 06/04/2023]
Abstract
The activities of the phosphate industry may lead to enhanced levels of naturally occurring radioactivity in terrestrial and aquatic ecosystems. We performed a preliminary environmental risk assessment (ERA) of environmental contamination resulting from the activities of 5 phosphate fertiliser plants (located in Belgium, Spain, Syria, Egypt, Brazil), a phosphate-mine and a phosphate-export platform in a harbour (both located in Syria). These sites were selected because of the availability of information on concentrations of naturally occurring radionuclides in the surrounding environments. Assessments were generally performed considering highest environmental concentrations reported in the studies. The ERICA Tool, operating in a Tier 2 assessment mode, was used to predict radiation dose rates and associated risk to the selected reference organisms using the ERICA default parameter setting. Reference organisms were those assigned as default by the ERICA Tool. Potential impact is expressed as a best estimate risk quotient (RQ) based on a radiation screening value of 10 μGy h(-1). If RQ ≤ 1, the environment is considered unlikely to be at risk and further radiological assessment is not deemed necessary. Except for one of the cases assessed, the best estimate RQ exceeded 1 for at least one of the reference organisms. Internal exposure covered for 90-100 % of the total dose. (226)Ra or (210)Po were generally the highest contributors to the dose. The aquatic ecosystems in the vicinity of the phosphate fertiliser plants in Tessenderlo (Belgium), Huelva (Spain), Goiás (Brazil) and the terrestrial environment around the phosphate mine in Palmyra (Syria) are the ecosystems predicted to be potentially most at risk.
Collapse
Affiliation(s)
- Hildegarde Vandenhove
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium.
| | - Jordi Vives i Batlle
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium
| | - Lieve Sweeck
- Belgian Nuclear Research Centre (SCK•CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol, Belgium
| |
Collapse
|
12
|
Beresford NA, Barnett CL, Vives i Batlle J, Potter ED, Ibrahimi ZF, Barlow TS, Schieb C, Jones DG, Copplestone D. Exposure of burrowing mammals to 222Rn. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 431:252-261. [PMID: 22687435 DOI: 10.1016/j.scitotenv.2012.05.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 06/01/2023]
Abstract
Estimates of absorbed dose rates to wildlife from exposure to natural background radionuclides are required to put estimates of dose rates arising from regulated releases of radioactivity and proposed benchmarks into context. Recent review papers have estimated dose rates to wildlife from (40)K, and (238)U and (232)Th series radionuclides. However, only one study previous has considered the potential dose rates to burrowing animals from inhaled (222)Rn and its daughter products. In this paper we describe a study conducted at seven sites in northwest England. Passive track etch detectors were used to measure the (222)Rn concentrations in artificial burrows over a period of approximately one year. Results suggest that absorbed dose rates to burrowing mammals as a consequence of exposure to (222)Rn are likely to be at least an order of magnitude higher than those suggested in previous evaluations of natural background exposure rates which had omitted this radionuclide and exposure pathway. Dose rates in some areas of Great Britain will be considerably in excess of incremental no-effects benchmark dose rates suggested for use as screening levels. Such advised benchmark dose rates need to be better put into context with background dose rates, including exposure to (222)Rn, to ensure credibility; although the context will be determined by the purpose of the benchmark and the assessment level.
Collapse
Affiliation(s)
- N A Beresford
- NERC Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Av. Bailrigg, Lancaster LA1 4AP, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|