1
|
Moreau J, Rabdeau J, Badenhausser I, Giraudeau M, Sepp T, Crépin M, Gaffard A, Bretagnolle V, Monceau K. Pesticide impacts on avian species with special reference to farmland birds: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:790. [PMID: 36107257 DOI: 10.1007/s10661-022-10394-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
For decades, we have observed a major biodiversity crisis impacting all taxa. Avian species have been particularly well monitored over the long term, documenting their declines. In particular, farmland birds are decreasing worldwide, but the contribution of pesticides to their decline remains controversial. Most studies addressing the effects of agrochemicals are limited to their assessment under controlled laboratory conditions, the determination of lethal dose 50 (LD50) values and testing in a few species, most belonging to Galliformes. They often ignore the high interspecies variability in sensitivity, delayed sublethal effects on the physiology, behaviour and life-history traits of individuals and their consequences at the population and community levels. Most importantly, they have entirely neglected to test for the multiple exposure pathways to which individuals are subjected in the field (cocktail effects). The present review aims to provide a comprehensive overview for ecologists, evolutionary ecologists and conservationists. We aimed to compile the literature on the effects of pesticides on bird physiology, behaviour and life-history traits, collecting evidence from model and wild species and from field and lab experiments to highlight the gaps that remain to be filled. We show how subtle nonlethal exposure might be pernicious, with major consequences for bird populations and communities. We finally propose several prospective guidelines for future studies that may be considered to meet urgent needs.
Collapse
Affiliation(s)
- Jérôme Moreau
- Équipe Écologie Évolutive, UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, Dijon, France
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Juliette Rabdeau
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Isabelle Badenhausser
- Unité de Recherche Pluridisciplinaire Prairies Plantes Fourragères, INRAE, 86600, Lusignan, France
| | - Mathieu Giraudeau
- UMR IRD, CREEC, Université de Montpellier, 224-CNRS 5290, Montpellier, France
- Centre de Recherche en Écologie Et Évolution de La Sante (CREES), Montpellier, France
- Littoral Environnement Et Sociétés (LIENSs), UMR 7266, CNRS- La Rochelle Université, La Rochelle, France
| | - Tuul Sepp
- Department of Zoology, University of Tartu, Tartu, Estonia
| | - Malaury Crépin
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Agathe Gaffard
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Vincent Bretagnolle
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
- LTSER "Zone Atelier Plaine & Val de Sèvre", CNRS, 79360, Villiers-en-Bois, France
| | - Karine Monceau
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France.
| |
Collapse
|
2
|
Crisol-Martínez E, Moreno-Moyano LT, Wilkinson N, Prasai T, Brown PH, Moore RJ, Stanley D. A low dose of an organophosphate insecticide causes dysbiosis and sex-dependent responses in the intestinal microbiota of the Japanese quail (Coturnix japonica). PeerJ 2016; 4:e2002. [PMID: 27168998 PMCID: PMC4860294 DOI: 10.7717/peerj.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/12/2016] [Indexed: 12/26/2022] Open
Abstract
Organophosphate insecticides have been directly or indirectly implicated in avian populations declining worldwide. Birds in agricultural environments are commonly exposed to these insecticides, mainly through ingestion of invertebrates after insecticide application. Despite insecticide exposure in birds occurring mostly by ingestion, the impact of organophosphates on the avian digestive system has been poorly researched. In this work we used the Japanese quail (Coturnix japonica) as an avian model to study short-term microbial community responses to a single dose of trichlorfon at low concentration in three sample origins of the gastrointestinal tract (GIT): caecum, large intestine and faeces. Using next-generation sequencing of 16S rRNA gene amplicons as bacterial markers, the study showed that ingestion of insecticide caused significant changes in the GIT microbiome. Specifically, microbiota composition and diversity differed between treated and untreated quail. Insecticide-associated responses in the caecum showed differences between sexes which did not occur with the other sample types. In caecal microbiota, only treated females showed significant shifts in a number of genera within the Lachnospiraceae and the Enterobacteriaceae families. The major responses in the large intestine were a significant reduction in the genus Lactobacillus and increases in abundance of a number of Proteobacteria genera. All microbial shifts in faeces occurred in phylotypes that were represented at low relative abundances. In general, changes in microbiota possibly resulted from contrasting responses towards the insecticide, either positive (e.g., biodegrading bacteria) or negative (e.g., insecticide-susceptible bacteria). This study demonstrates the significant impact that organophosphate insecticides have on the avian gut microbiota; showing that a single small dose of trichlorfon caused dysbiosis in the GIT of the Japanese quail. Further research is necessary to understand the implications on birds’ health, especially in females.
Collapse
Affiliation(s)
- Eduardo Crisol-Martínez
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia; Current affiliation: Central Queensland University, Melbourne, Victoria, Australia
| | | | - Ngare Wilkinson
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia; Institute for Future Farming Systems, Central Queensland University, Rockhampton, Queensland, Australia; Poultry Cooperative Research Centre, University of New England, Armidale, New South Wales, Australia
| | - Tanka Prasai
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia; Institute for Future Farming Systems, Central Queensland University, Rockhampton, Queensland, Australia
| | - Philip H Brown
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia; Institute for Future Farming Systems, Central Queensland University, Rockhampton, Queensland, Australia
| | - Robert J Moore
- Poultry Cooperative Research Centre, University of New England, Armidale, New South Wales, Australia; School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Dragana Stanley
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia; Institute for Future Farming Systems, Central Queensland University, Rockhampton, Queensland, Australia; Poultry Cooperative Research Centre, University of New England, Armidale, New South Wales, Australia
| |
Collapse
|
3
|
Güngördü A, Uçkun M. Comparative assessment of in vitro and in vivo toxicity of azinphos methyl and its commercial formulation. ENVIRONMENTAL TOXICOLOGY 2015; 30:1091-1101. [PMID: 24616035 DOI: 10.1002/tox.21982] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/25/2014] [Accepted: 03/02/2014] [Indexed: 06/03/2023]
Abstract
The toxic effects of Gusathion (GUS), which is a commercial organophosphate (OP) pesticide, and also its active ingredient, azinphos methyl (AzM), are evaluated comparatively with in vitro and in vivo studies. Initially, the 96-h LC50 values of AzM and GUS were estimated for two different life stages of Xenopus laevis, embryos, and tadpoles. The actual AzM concentrations in exposure media were monitored by high-performance liquid chromatography. Also, the sub-lethal effects of these compounds to tadpoles were determined 24 h later at exposure concentrations of 0.1 and 1 mg/L using selected biomarker enzymes such as acetylcholinesterase (AChE), carboxylesterase (CaE), glutathione S-transferase (GST), glutathione reductase, lactate dehydrogenase, and aspartate aminotrasferase. Differences in AChE inhibition capacities of AzM and GUS were evaluated under in vitro conditions between frogs and fish in the second part of this study. The AChE activities in a pure electrical eel AChE solution and in brain homogenates of adult Cyprinus carpio, Pelophylax ridibundus, and X. laevis were assayed after in vitro exposure to 0.05, 0.5, 5, and 50 mg/L concentrations of AzM and GUS. According to in vivo studies AChE, CaE and GST are important biomarkers of the effect of OP exposure while CaE may be more effective in short-term, low-concentration exposures. The results of in vitro studies showed that amphibian brain AChEs were relatively more resistant to OP exposure than fish AChEs. The resistance may be the cause of the lower toxicity/lethality of OP compounds to amphibians than to fish.
Collapse
Affiliation(s)
- Abbas Güngördü
- Department of Biology, Laboratory of Environmental Toxicology, Faculty of Arts and Science, Inonu University, Malatya, 44280, Turkey
| | - Miraç Uçkun
- Department of Biology, Laboratory of Environmental Toxicology, Faculty of Arts and Science, Inonu University, Malatya, 44280, Turkey
| |
Collapse
|
4
|
Chen JH, Wang HL, Guo BY, Xu P, Li JZ. The Enantioselective Pharmacokinetics Metabolism of Diniconazole in Quail (Coturnix coturnixs japonica
). Chirality 2013; 25:910-6. [DOI: 10.1002/chir.22233] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Jin Hui Chen
- Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing P.R. China
| | - Hui Li Wang
- Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing P.R. China
| | - Bao Yuan Guo
- Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing P.R. China
| | - Peng Xu
- Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing P.R. China
| | - Jian Zhong Li
- Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing P.R. China
| |
Collapse
|